forked from forkineye/ESPixelStick
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathPixelDriver.cpp
300 lines (252 loc) · 9.58 KB
/
PixelDriver.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/*
* PixelDriver.cpp - Pixel driver code for ESPixelStick
*
* Project: ESPixelStick - An ESP8266 and E1.31 based pixel driver
* Copyright (c) 2015 Shelby Merrick
* http://www.forkineye.com
*
* This program is provided free for you to use in any way that you wish,
* subject to the laws and regulations where you are using it. Due diligence
* is strongly suggested before using this code. Please give credit where due.
*
* The Author makes no warranty of any kind, express or implied, with regard
* to this program or the documentation contained in this document. The
* Author shall not be liable in any event for incidental or consequential
* damages in connection with, or arising out of, the furnishing, performance
* or use of these programs.
*
*/
#include <Arduino.h>
#include <utility>
#include <algorithm>
#include "PixelDriver.h"
extern "C" {
#include <eagle_soc.h>
#include <ets_sys.h>
#include <uart.h>
#include <uart_register.h>
}
static const uint8_t *uart_buffer; // Buffer tracker
static const uint8_t *uart_buffer_tail; // Buffer tracker
uint8_t PixelDriver::rOffset = 0;
uint8_t PixelDriver::gOffset = 1;
uint8_t PixelDriver::bOffset = 2;
int PixelDriver::begin() {
return begin(PixelType::WS2811, PixelColor::RGB, 170);
}
int PixelDriver::begin(PixelType type) {
return begin(type, PixelColor::RGB, 170);
}
int PixelDriver::begin(PixelType type, PixelColor color, uint16_t length) {
int retval = true;
this->type = type;
this->color = color;
updateOrder(color);
if (pixdata) free(pixdata);
szBuffer = length * 3;
if (pixdata = static_cast<uint8_t *>(malloc(szBuffer))) {
memset(pixdata, 0, szBuffer);
numPixels = length;
} else {
numPixels = 0;
szBuffer = 0;
retval = false;
}
uint16_t szAsync = szBuffer;
if (type == PixelType::GECE) {
if (pbuff) free(pbuff);
if (pbuff = static_cast<uint8_t *>(malloc(GECE_PSIZE))) {
memset(pbuff, 0, GECE_PSIZE);
} else {
numPixels = 0;
szBuffer = 0;
retval = false;
}
szAsync = GECE_PSIZE;
}
if (asyncdata) free(asyncdata);
if (asyncdata = static_cast<uint8_t *>(malloc(szAsync))) {
memset(asyncdata, 0, szAsync);
} else {
numPixels = 0;
szBuffer = 0;
retval = false;
}
if (type == PixelType::WS2811) {
refreshTime = WS2811_TFRAME * length + WS2811_TIDLE;
ws2811_init();
} else if (type == PixelType::GECE) {
refreshTime = (GECE_TFRAME + GECE_TIDLE) * length;
gece_init();
} else {
retval = false;
}
return retval;
}
void PixelDriver::setPin(uint8_t pin) {
if (this->pin >= 0)
this->pin = pin;
}
void PixelDriver::ws2811_init() {
/* Serial rate is 4x 800KHz for WS2811 */
Serial1.begin(3200000, SERIAL_6N1, SERIAL_TX_ONLY);
CLEAR_PERI_REG_MASK(UART_CONF0(UART), UART_INV_MASK);
SET_PERI_REG_MASK(UART_CONF0(UART), (BIT(22)));
/* Clear FIFOs */
SET_PERI_REG_MASK(UART_CONF0(UART), UART_RXFIFO_RST | UART_TXFIFO_RST);
CLEAR_PERI_REG_MASK(UART_CONF0(UART), UART_RXFIFO_RST | UART_TXFIFO_RST);
/* Disable all interrupts */
ETS_UART_INTR_DISABLE();
/* Atttach interrupt handler */
ETS_UART_INTR_ATTACH(handleWS2811, NULL);
/* Set TX FIFO trigger. 80 bytes gives 200 microsecs to refill the FIFO */
WRITE_PERI_REG(UART_CONF1(UART), 80 << UART_TXFIFO_EMPTY_THRHD_S);
/* Disable RX & TX interrupts. It is enabled by uart.c in the SDK */
CLEAR_PERI_REG_MASK(UART_INT_ENA(UART), UART_RXFIFO_FULL_INT_ENA | UART_TXFIFO_EMPTY_INT_ENA);
/* Clear all pending interrupts in UART1 */
WRITE_PERI_REG(UART_INT_CLR(UART), 0xffff);
/* Reenable interrupts */
ETS_UART_INTR_ENABLE();
}
void PixelDriver::gece_init() {
// Serial rate is 3x 100KHz for GECE
Serial1.begin(300000, SERIAL_7N1, SERIAL_TX_ONLY);
SET_PERI_REG_MASK(UART_CONF0(UART), UART_TXD_BRK);
delayMicroseconds(GECE_TIDLE);
}
void PixelDriver::updateOrder(PixelColor color) {
this->color = color;
switch (color) {
case PixelColor::GRB:
rOffset = 1;
gOffset = 0;
bOffset = 2;
break;
case PixelColor::BRG:
rOffset = 1;
gOffset = 2;
bOffset = 0;
break;
case PixelColor::RBG:
rOffset = 0;
gOffset = 2;
bOffset = 1;
break;
case PixelColor::GBR:
rOffset = 2;
gOffset = 0;
bOffset = 1;
break;
case PixelColor::BGR:
rOffset = 2;
gOffset = 1;
bOffset = 0;
break;
default:
rOffset = 0;
gOffset = 1;
bOffset = 2;
}
}
void ICACHE_RAM_ATTR PixelDriver::handleWS2811(void *param) {
/* Process if UART1 */
if (READ_PERI_REG(UART_INT_ST(UART1))) {
// Fill the FIFO with new data
uart_buffer = fillWS2811(uart_buffer, uart_buffer_tail);
// Disable TX interrupt when done
if (uart_buffer == uart_buffer_tail)
CLEAR_PERI_REG_MASK(UART_INT_ENA(UART1), UART_TXFIFO_EMPTY_INT_ENA);
// Clear all interrupts flags (just in case)
WRITE_PERI_REG(UART_INT_CLR(UART1), 0xffff);
}
/* Clear if UART0 */
if (READ_PERI_REG(UART_INT_ST(UART0)))
WRITE_PERI_REG(UART_INT_CLR(UART0), 0xffff);
}
const uint8_t* ICACHE_RAM_ATTR PixelDriver::fillWS2811(const uint8_t *buff,
const uint8_t *tail) {
uint8_t avail = (UART_TX_FIFO_SIZE - getFifoLength()) / 4;
if (tail - buff > avail)
tail = buff + avail;
while (buff + 2 < tail) {
uint8_t subpix = buff[rOffset];
enqueue(LOOKUP_2811[(GAMMA_TABLE[subpix] >> (6+GAMMA_SHIFT)) & 0x3]);
enqueue(LOOKUP_2811[(GAMMA_TABLE[subpix] >> (4+GAMMA_SHIFT)) & 0x3]);
enqueue(LOOKUP_2811[(GAMMA_TABLE[subpix] >> (2+GAMMA_SHIFT)) & 0x3]);
enqueue(LOOKUP_2811[(GAMMA_TABLE[subpix] >> (0+GAMMA_SHIFT)) & 0x3]);
subpix = buff[gOffset];
enqueue(LOOKUP_2811[(GAMMA_TABLE[subpix] >> (6+GAMMA_SHIFT)) & 0x3]);
enqueue(LOOKUP_2811[(GAMMA_TABLE[subpix] >> (4+GAMMA_SHIFT)) & 0x3]);
enqueue(LOOKUP_2811[(GAMMA_TABLE[subpix] >> (2+GAMMA_SHIFT)) & 0x3]);
enqueue(LOOKUP_2811[(GAMMA_TABLE[subpix] >> (0+GAMMA_SHIFT)) & 0x3]);
subpix = buff[bOffset];
enqueue(LOOKUP_2811[(GAMMA_TABLE[subpix] >> (6+GAMMA_SHIFT)) & 0x3]);
enqueue(LOOKUP_2811[(GAMMA_TABLE[subpix] >> (4+GAMMA_SHIFT)) & 0x3]);
enqueue(LOOKUP_2811[(GAMMA_TABLE[subpix] >> (2+GAMMA_SHIFT)) & 0x3]);
enqueue(LOOKUP_2811[(GAMMA_TABLE[subpix] >> (0+GAMMA_SHIFT)) & 0x3]);
buff += 3;
}
return buff;
}
void ICACHE_RAM_ATTR PixelDriver::show() {
if (!pixdata) return;
if (type == PixelType::WS2811) {
if (!cntZigzag) { // Normal / group copy
for (size_t led = 0; led < szBuffer / 3; led++) {
uint16 modifier = led / cntGroup;
asyncdata[3 * led + 0] = pixdata[3 * modifier + 0];
asyncdata[3 * led + 1] = pixdata[3 * modifier + 1];
asyncdata[3 * led + 2] = pixdata[3 * modifier + 2];
}
} else { // Zigzag copy
for (size_t led = 0; led < szBuffer / 3; led++) {
uint16 modifier = led / cntGroup;
if (led / cntZigzag % 2) { // Odd "zig"
int group = cntZigzag * (led / cntZigzag);
int this_led = (group + cntZigzag - (led % cntZigzag) - 1) / cntGroup;
asyncdata[3 * led + 0] = pixdata[3 * this_led + 0];
asyncdata[3 * led + 1] = pixdata[3 * this_led + 1];
asyncdata[3 * led + 2] = pixdata[3 * this_led + 2];
} else { // Even "zag"
asyncdata[3 * led + 0] = pixdata[3 * modifier + 0];
asyncdata[3 * led + 1] = pixdata[3 * modifier + 1];
asyncdata[3 * led + 2] = pixdata[3 * modifier + 2];
}
}
}
uart_buffer = asyncdata;
uart_buffer_tail = asyncdata + szBuffer;
SET_PERI_REG_MASK(UART_INT_ENA(1), UART_TXFIFO_EMPTY_INT_ENA);
startTime = micros();
} else if (type == PixelType::GECE) {
uint32_t packet = 0;
uint32_t pTime = 0;
// Build a GECE packet
startTime = micros();
for (uint8_t i = 0; i < numPixels; i++) {
packet = (packet & ~GECE_ADDRESS_MASK) | (i << 20);
packet = (packet & ~GECE_BRIGHTNESS_MASK) |
(GECE_DEFAULT_BRIGHTNESS << 12);
packet = (packet & ~GECE_BLUE_MASK) | (pixdata[i*3+2] << 4);
packet = (packet & ~GECE_GREEN_MASK) | pixdata[i*3+1];
packet = (packet & ~GECE_RED_MASK) | (pixdata[i*3] >> 4);
uint8_t shift = GECE_PSIZE;
for (uint8_t i = 0; i < GECE_PSIZE; i++)
pbuff[i] = LOOKUP_GECE[(packet >> --shift) & 0x1];
// Wait until ready
while ((micros() - pTime) < (GECE_TFRAME + GECE_TIDLE)) {}
// 10us start bit
pTime = micros();
uint32_t c = _getCycleCount();
CLEAR_PERI_REG_MASK(UART_CONF0(UART), UART_TXD_BRK);
while ((_getCycleCount() - c) < CYCLES_GECE_START - 100) {}
// Send packet and idle low (break)
Serial1.write(pbuff, GECE_PSIZE);
SET_PERI_REG_MASK(UART_CONF0(UART), UART_TXD_BRK);
}
}
}
uint8_t* PixelDriver::getData() {
return asyncdata; // data post grouping or zigzaging
// return pixdata;
}