-
Notifications
You must be signed in to change notification settings - Fork 221
/
Copy pathbayesian_inference.Rmd
313 lines (199 loc) · 7.21 KB
/
bayesian_inference.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# (PART) 贝叶斯篇 {-}
# 贝叶斯推断 {#bayesian-inference}
```{r, include=FALSE}
knitr::opts_chunk$set(
echo = TRUE,
warning = FALSE,
message = FALSE,
fig.showtext = TRUE
)
```
```{r bayes-01, message=FALSE, warning=FALSE}
library(tidyverse)
library(tidybayes)
library(rstan)
library(brms)
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
```
之前我们讲了线性模型和混合线性模型,今天我们往前一步,应该说是一大步。因为这一步迈向了贝叶斯分析,与频率学派的分析有本质的区别,这种区别类似经典物理和量子物理的区别。
- 频率学派,是从数据出发
- 贝叶斯。先假定参数有一个分布,看到数据后,再重新分配可能性。
> Statistical inference is the process of using observed data to infer properties of the statistical distributions that generated that data.
简单点说
$$
\Pr(\text{parameters} | \text{data}).
$$
这个量实际上贝叶斯定理中的后验概率分布(*posterior distribution*)
$$
\underbrace{\Pr(\text{parameters} | \text{data})}_{\text{posterior}} = \frac{\overbrace{\Pr(\text{data} | \text{parameters})}^{\text{likelihood}} \overbrace{\Pr(\text{parameters})}^{\text{prior}}}{\underbrace{\Pr(\text{data})}_{evidence}} .
$$
下面,通过具体的案例演示简单的贝叶斯推断(Bayesian inference)
## 学生身高的分布?
假定这是收集的200位学生身高和体重数据
```{r}
d <- readr::read_rds(here::here('demo_data', "height_weight.rds"))
head(d)
```
用dplyr函数很容易得到样本的统计量
```{r}
d %>%
summarise(
across(height, list(mean = mean, median = median, max = max, min = min, sd = sd))
)
```
```{r}
d %>%
ggplot(aes(x = height)) +
geom_density()
```
## 推断
> 注意到,我们的数据只是样本,不代表全体分布。我们只有通过样本去**推断**全体分布情况。
通过前面的身高的统计量,我们可以合理的猜测:
- 均值可能是160,162,170,172,..., 或者说这个均值在一个范围之内,在这个范围内,有些值的可能性大,有些值可能性较低。比如,认为这值游离在(150,180)范围,其中168左右的可能最大,两端的可能性最低。如果寻求用数学语言来描述,它符合正态分布的特征
- 方差也可以假设在(0, 50)范围内都有可能,而且每个位置上的概率都相等
把我们的猜测画出来就是这样的,
```{r, fig.width = 6, fig.height = 2.5}
library(patchwork)
p1 <-
ggplot(data = tibble(x = seq(from = 100, to = 230, by = .1)),
aes(x = x, y = dnorm(x, mean = 168, sd = 20))) +
geom_line() +
xlab("height_mean") +
ylab("density")
p2 <-
ggplot(data = tibble(x = seq(from = -10, to = 55, by = .1)),
aes(x = x, y = dunif(x, min = 0, max = 50))) +
geom_line() +
xlab("height_sd") +
ylab("density")
p1 + p2
```
### 参数空间
我们这里构建 1000*1000个 (`mu, sigma`) 参数空间
```{r}
d_grid <- crossing(
mu = seq(from = 150, to = 190, length.out = 1000),
sigma = seq(from = 4, to = 9, length.out = 1000)
)
d_grid
```
### likelihood
参数空间里,计算在每个(mu, sigma)组合下,身高值(`d$height`)出现的概率密度`dnorm(d2$height, mean = mu, sd = sigma)`,然后加起来。
很显然,不同的(mu, sigma),概率密度之和是不一样的,我们这里有1000*1000 个(mu, sigma)组合,
所以会产生 1000*1000 个值
```{r}
grid_function <- function(mu, sigma) {
dnorm(d$height, mean = mu, sd = sigma, log = T) %>%
sum()
}
```
```{r, eval=FALSE}
d_grid %>%
mutate(log_likelihood = map2_dbl(mu, sigma, grid_function))
```
### prior
```{r, eval=FALSE}
d_grid %>%
mutate(prior_mu = dnorm(mu, mean = 178, sd = 20, log = T),
prior_sigma = dunif(sigma, min = 0, max = 50, log = T))
```
### posterior
```{r}
d_grid <-
d_grid %>%
mutate(log_likelihood = map2_dbl(mu, sigma, grid_function)) %>%
mutate(prior_mu = dnorm(mu, mean = 168, sd = 20, log = T),
prior_sigma = dunif(sigma, min = 0, max = 50, log = T)) %>%
mutate(product = log_likelihood + prior_mu + prior_sigma) %>%
mutate(probability = exp(product - max(product)))
head(d_grid)
```
```{r, fig.width = 3.25, fig.height = 3}
d_grid %>%
ggplot(aes(x = mu, y = sigma, z = probability)) +
geom_contour() +
labs(
x = expression(mu),
y = expression(sigma)
) +
coord_cartesian(
xlim = range(d_grid$mu),
ylim = range(d_grid$sigma)
) +
theme(panel.grid = element_blank())
```
```{r, fig.width = 4.5, fig.height = 3}
d_grid %>%
ggplot(aes(x = mu, y = sigma)) +
geom_raster(
aes(fill = probability),
interpolate = T
) +
scale_fill_viridis_c(option = "A") +
labs(
x = expression(mu),
y = expression(sigma)
) +
theme(panel.grid = element_blank())
```
### sampling from posterior
后验分布按照probability值的大小来抽样。
```{r}
d_grid_samples <-
d_grid %>%
sample_n(size = 1e4, replace = T, weight = probability)
```
```{r, fig.width = 3.25, fig.height = 3}
d_grid_samples %>%
ggplot(aes(x = mu, y = sigma)) +
geom_point(size = .9, alpha = 1/15) +
scale_fill_viridis_c() +
labs(x = expression(mu[samples]),
y = expression(sigma[samples])) +
theme(panel.grid = element_blank())
```
```{r, fig.width = 6, fig.height = 3}
d_grid_samples %>%
select(mu, sigma) %>%
pivot_longer(
cols = everything(),
names_to = "key",
values_to = "value"
) %>%
ggplot(aes(x = value)) +
geom_density(fill = "grey33", size = 0) +
scale_y_continuous(NULL, breaks = NULL) +
xlab(NULL) +
theme(panel.grid = element_blank()) +
facet_wrap(~key, scales = "free")
```
### 最高密度区间
也可以用`tidybayes::mode_hdi()`得到后验概率的**最高密度区间**
```{r}
library(tidybayes)
d_grid_samples %>%
select(mu, sigma) %>%
pivot_longer(
cols = everything(),
names_to = "key",
values_to = "value"
) %>%
group_by(key) %>%
mode_hdi(value)
```
以上是通过**网格近似**的方法得到height分布的后验概率,但这种方法需要构建参数网格,对于较复杂的模型,计算量会陡增,内存占用大、比较费时,因此在实际的数据中,一般不采用这种方法,但网格近似的方法可以帮助我们很好地理解贝叶斯数据分析。
## 参考资料
- https://mc-stan.org/
- https://github.com/jgabry/bayes-workflow-book
- https://github.com/XiangyunHuang/masr/
- https://github.com/ASKurz/Statistical_Rethinking_with_brms_ggplot2_and_the_tidyverse_2_ed/
- 《Regression and Other Stories》, Andrew Gelman, Cambridge University Press. 2020
- 《A Student's Guide to Bayesian Statistics》, Ben Lambert, 2018
- 《Statistical Rethinking: A Bayesian Course with Examples in R and STAN》 ( 2nd Edition), by Richard McElreath, 2020
- 《Bayesian Data Analysis》, Third Edition, 2013
- 《Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan》 (2nd Edition) John Kruschke, 2014
- 《Bayesian Models for Astrophysical Data: Using R, JAGS, Python, and Stan》, Joseph M. Hilbe, Cambridge University Press, 2017
```{r, echo = F, message = F, warning = F, results = "hide"}
pacman::p_unload(pacman::p_loaded(), character.only = TRUE)
```