forked from adaruna3/continual-kge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathl2_models.py
167 lines (140 loc) · 6.93 KB
/
l2_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
import torch.nn as nn
from torch.autograd import Variable
from logger.terminal_utils import logout
class L2(nn.Module):
def __init__(self):
super(L2, self).__init__()
def update_og_params(self):
for n, p in self.named_parameters():
if p.requires_grad:
n = n.replace('.', '_')
# update the stored values
self.register_buffer('{}_l2_og_params'.format(n), p.detach().clone())
def l2_regularization(self):
try:
losses = []
for n, p in self.named_parameters():
if p.requires_grad:
n = n.replace('.', '_')
p_prev = getattr(self, '{}_l2_og_params'.format(n))
if "rel" in n:
losses.append(((p - p_prev)[self.prev_rels] ** 2).sum())
elif "ent" in n:
losses.append(((p - p_prev)[self.prev_ents] ** 2).sum())
else:
logout("Unknown model params", "f")
exit()
return sum(losses)
except AttributeError:
# default L2 loss when no prior task
return torch.tensor(0., device=self.device)
class Analogy(L2):
def __init__(self, num_ents, num_rels, hidden_size, device):
super(Analogy, self).__init__()
self.ent_re_embeddings = nn.Embedding(num_ents, int(hidden_size / 2.0)).to(device)
self.ent_im_embeddings = nn.Embedding(num_ents, int(hidden_size / 2.0)).to(device)
self.rel_re_embeddings = nn.Embedding(num_rels, int(hidden_size / 2.0)).to(device)
self.rel_im_embeddings = nn.Embedding(num_rels, int(hidden_size / 2.0)).to(device)
self.ent_embeddings = nn.Embedding(num_ents, int(hidden_size / 2.0)).to(device)
self.rel_embeddings = nn.Embedding(num_rels, int(hidden_size / 2.0)).to(device)
self.criterion = nn.Sigmoid().to(device)
self.device = device
self.init_weights()
# L2 regularization related
self.l2_task_weight = Variable(torch.Tensor([1.0])).to(self.device)
self.prev_ents = []
self.prev_rels = []
def init_weights(self):
nn.init.xavier_uniform_(self.ent_re_embeddings.weight.data)
nn.init.xavier_uniform_(self.ent_im_embeddings.weight.data)
nn.init.xavier_uniform_(self.rel_re_embeddings.weight.data)
nn.init.xavier_uniform_(self.rel_im_embeddings.weight.data)
nn.init.xavier_uniform_(self.ent_embeddings.weight.data)
nn.init.xavier_uniform_(self.rel_embeddings.weight.data)
def set_regularize_ents_rels(self, prev_ents, prev_rels):
self.prev_ents = torch.tensor(prev_ents, dtype=torch.long)
self.prev_rels = torch.tensor(prev_rels, dtype=torch.long)
def set_task_weight(self, weight):
self.l2_task_weight = Variable(torch.Tensor([weight])).to(self.device)
def _calc(self, h_re, h_im, h, t_re, t_im, t, r_re, r_im, r):
return torch.sum(r_re * h_re * t_re + r_re * h_im * t_im + r_im * h_re * t_im - r_im * h_im * t_re, -1) + \
torch.sum(h * t * r, -1)
def loss(self, score, batch_y):
return torch.sum(-torch.log(self.criterion(score * batch_y.float())))
def forward(self, batch_h, batch_r, batch_t, batch_y):
h_re = self.ent_re_embeddings(batch_h)
h_im = self.ent_im_embeddings(batch_h)
h = self.ent_embeddings(batch_h)
t_re = self.ent_re_embeddings(batch_t)
t_im = self.ent_im_embeddings(batch_t)
t = self.ent_embeddings(batch_t)
r_re = self.rel_re_embeddings(batch_r)
r_im = self.rel_im_embeddings(batch_r)
r = self.rel_embeddings(batch_r)
score = self._calc(h_re, h_im, h, t_re, t_im, t, r_re, r_im, r)
return self.loss(score, batch_y) + self.l2_task_weight * self.l2_regularization()
def predict(self, batch_h, batch_r, batch_t):
h_re = self.ent_re_embeddings(batch_h)
h_im = self.ent_im_embeddings(batch_h)
h = self.ent_embeddings(batch_h)
t_re = self.ent_re_embeddings(batch_t)
t_im = self.ent_im_embeddings(batch_t)
t = self.ent_embeddings(batch_t)
r_re = self.rel_re_embeddings(batch_r)
r_im = self.rel_im_embeddings(batch_r)
r = self.rel_embeddings(batch_r)
score = self._calc(h_re, h_im, h, t_re, t_im, t, r_re, r_im, r)
return -score.cpu().data.numpy()
class TransE(L2):
def __init__(self, num_ents, num_rels, hidden_size, margin, neg_ratio, batch_size, device):
super(TransE, self).__init__()
self.ent_embeddings = nn.Embedding(num_ents, hidden_size).to(device)
self.rel_embeddings = nn.Embedding(num_rels, hidden_size).to(device)
self.criterion = nn.MarginRankingLoss(margin, reduction="sum").to(device)
self.neg_ratio = neg_ratio
self.batch_size = batch_size
self.device = device
self.init_weights()
# L2 regularization related
self.l2_task_weight = Variable(torch.Tensor([1.0])).to(self.device)
self.prev_ents = []
self.prev_rels = []
def init_weights(self):
nn.init.xavier_uniform_(self.ent_embeddings.weight.data)
nn.init.xavier_uniform_(self.rel_embeddings.weight.data)
def set_regularize_ents_rels(self, prev_ents, prev_rels):
self.prev_ents = torch.tensor(prev_ents, dtype=torch.long)
self.prev_rels = torch.tensor(prev_rels, dtype=torch.long)
def set_task_weight(self, weight):
self.l2_task_weight = Variable(torch.Tensor([weight])).to(self.device)
def _calc(self, h, r, t):
h = nn.functional.normalize(h, 2, -1)
r = nn.functional.normalize(r, 2, -1)
t = nn.functional.normalize(t, 2, -1)
return torch.norm(h + r - t, 1, -1)
def loss(self, p_score, n_score):
y = Variable(torch.Tensor([-1])).to(self.device)
return self.criterion(p_score, n_score, y)
def forward(self, batch_h, batch_r, batch_t, batch_y):
h = self.ent_embeddings(batch_h)
r = self.rel_embeddings(batch_r)
t = self.ent_embeddings(batch_t)
score = self._calc(h, r, t)
p_score = self.get_positive_score(score)
n_score = self.get_negative_score(score)
return self.loss(p_score, n_score) + self.l2_task_weight * self.l2_regularization()
def predict(self, batch_h, batch_r, batch_t):
h = self.ent_embeddings(batch_h)
r = self.rel_embeddings(batch_r)
t = self.ent_embeddings(batch_t)
score = self._calc(h, r, t)
return score.cpu().data.numpy()
def get_positive_score(self, score):
return score[0:len(score):self.neg_ratio+1]
def get_negative_score(self, score):
negs = torch.tensor([], dtype=torch.float32).to(self.device)
for idx in range(0, len(score), self.neg_ratio + 1):
batch_negs = score[idx + 1:idx + self.neg_ratio + 1]
negs = torch.cat((negs, torch.mean(batch_negs,0,keepdim=True)))
return negs