-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpix2pix.py
425 lines (301 loc) · 13 KB
/
pix2pix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import tensorflow as tf
import os
import pdb
import pathlib
import time
import datetime
from matplotlib import pyplot as plt
from IPython import display
# Datasets can be found here: http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/
dataset_name = "facades"
_URL = f"http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/{dataset_name}.tar.gz"
path_to_zip = tf.keras.utils.get_file(
fname=f"{dataset_name}.tar.gz",
origin=_URL,
extract=True,
)
pdb.set_trace()
path_to_zip = pathlib.Path(path_to_zip)
PATH = path_to_zip.parent / dataset_name
sample_image = tf.io.read_file(str(PATH / "train/1.jpg"))
sample_image = tf.io.decode_jpeg(sample_image)
print(sample_image.shape)
def load(image_file):
# Read and decode an image file to a uint8 tensor
image = tf.io.read_file(image_file)
image = tf.io.decode_jpeg(image)
# Split each image tensor into two tensors:
# - one with a real building facade image
# - one with an architecture label image
# Divide the width of the image in half to get each tensor
width = tf.shape(image)[1]
width //= 2
input_image = image[:, width:, :]
real_image = image[:, :width, :]
# Convert the imagesto float32 tensors
input_image = tf.cast(input_image, tf.float32)
real_image = tf.cast(real_image, tf.float32)
return input_image, real_image
# For testing
inp, re = load(str(PATH / "train/100.jpg"))
# The facade training set consists of 400 images
BUFFER_SIZE = 400
# Can be adjusted, but the pix2pix paper says this works best
BATCH_SIZE = 1
# Each image is 256x256
IMG_WIDTH = 256
IMG_HEIGHT = 256
def resize(input_image, real_image, height, width):
"""Resizes the image to be larger than the original size"""
input_image = tf.image.resize(
input_image, [height, width], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR
)
real_image = tf.image.resize(
real_image, [height, width], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR
)
return input_image, real_image
def random_crop(input_image, real_image):
"""Randomly crops the image back to its original size"""
stacked_image = tf.stack([input_image, real_image], axis=0)
cropped_image = tf.image.random_crop(
stacked_image, size=[2, IMG_HEIGHT, IMG_WIDTH, 3]
)
return cropped_image[0], cropped_image[1]
def normalize(input_image, real_image):
"""Normalizes the image to [-1, 1]"""
input_image = (input_image / 127.5) - 1
real_image = (real_image / 127.5) - 1
return input_image, real_image
@tf.function()
def random_jitter(input_image, real_image):
# Resize the image to 286x286
input_image, real_image = resize(input_image, real_image, 286, 286)
# Random cropping back to 256x256
input_image, real_image = random_crop(input_image, real_image)
if tf.random.uniform(()) > 0.5:
# Random mirroring
input_image = tf.image.flip_left_right(input_image)
real_image = tf.image.flip_left_right(real_image)
return input_image, real_image
def load_image_train(image_file):
"""Loads the images for training"""
input_image, real_image = load(image_file)
input_image, real_image = random_jitter(input_image, real_image)
input_image, real_image = normalize(input_image, real_image)
return input_image, real_image
def load_image_test(image_file):
"""Loads the images for testing"""
input_image, real_image = load(image_file)
input_image, real_image = resize(input_image, real_image, IMG_HEIGHT, IMG_WIDTH)
input_image, real_image = normalize(input_image, real_image)
return input_image, real_image
train_dataset = tf.data.Dataset.list_files(str(PATH / "train/*.jpg"))
train_dataset = train_dataset.map(load_image_train, num_parallel_calls=tf.data.AUTOTUNE)
train_dataset = train_dataset.shuffle(BUFFER_SIZE)
train_dataset = train_dataset.batch(BATCH_SIZE)
try:
test_dataset = tf.data.Dataset.list_files(str(PATH / "test/*.jpg"))
except tf.errors.InvalidArgumentError:
test_dataset = tf.data.Dataset.list_files(str(PATH / "val/*.jpg"))
test_dataset = test_dataset.map(load_image_test)
test_dataset = test_dataset.batch(BATCH_SIZE)
OUTPUT_CHANNELS = 3
def downsample(filters, size, apply_batchnorm=True):
initializer = tf.random_normal_initializer(0.0, 0.02)
result = tf.keras.Sequential()
result.add(
tf.keras.layers.Conv2D(
filters,
size,
strides=2,
padding="same",
kernel_initializer=initializer,
use_bias=False,
)
)
if apply_batchnorm:
result.add(tf.keras.layers.BatchNormalization())
result.add(tf.keras.layers.LeakyReLU())
return result
down_model = downsample(3, 4)
down_result = down_model(tf.expand_dims(inp, 0))
def upsample(filters, size, apply_dropout=False):
initializer = tf.random_normal_initializer(0.0, 0.02)
result = tf.keras.Sequential()
result.add(
tf.keras.layers.Conv2DTranspose(
filters,
size,
strides=2,
padding="same",
kernel_initializer=initializer,
use_bias=False,
)
)
result.add(tf.keras.layers.BatchNormalization())
if apply_dropout:
result.add(tf.keras.layers.Dropout(0.5))
result.add(tf.keras.layers.ReLU())
return result
up_model = upsample(3, 4)
up_result = up_model(down_result)
def Generator():
inputs = tf.keras.layers.Input(shape=[256, 256, 3])
down_stack = [
downsample(64, 4, apply_batchnorm=False), # (batch_size, 128, 128, 64)
downsample(128, 4), # (batch_size, 64, 64, 128)
downsample(256, 4), # (batch_size, 32, 32, 256)
downsample(512, 4), # (batch_size, 16, 16, 512)
downsample(512, 4), # (batch_size, 8, 8, 512)
downsample(512, 4), # (batch_size, 4, 4, 512)
downsample(512, 4), # (batch_size, 2, 2, 512)
downsample(512, 4), # (batch_size, 1, 1, 512)
]
up_stack = [
upsample(512, 4, apply_dropout=True), # (batch_size, 2, 2, 1024)
upsample(512, 4, apply_dropout=True), # (batch_size, 4, 4, 1024)
upsample(512, 4, apply_dropout=True), # (batch_size, 8, 8, 1024)
upsample(512, 4), # (batch_size, 16, 16, 1024)
upsample(256, 4), # (batch_size, 32, 32, 512)
upsample(128, 4), # (batch_size, 64, 64, 256)
upsample(64, 4), # (batch_size, 128, 128, 128)
]
initializer = tf.random_normal_initializer(0.0, 0.02)
last = tf.keras.layers.Conv2DTranspose(
OUTPUT_CHANNELS,
4,
strides=2,
padding="same",
kernel_initializer=initializer,
activation="tanh",
) # (batch_size, 256, 256, 3)
x = inputs
# Downsampling through the model
skips = []
for down in down_stack:
x = down(x)
skips.append(x)
skips = reversed(skips[:-1])
# Upsampling and establishing the skip connections
for up, skip in zip(up_stack, skips, strict=True):
x = up(x)
x = tf.keras.layers.Concatenate()([x, skip])
x = last(x)
return tf.keras.Model(inputs=inputs, outputs=x)
generator = Generator()
tf.keras.utils.plot_model(generator, show_shapes=True, dpi=64, to_file="generator.png")
gen_output = generator(inp[tf.newaxis, ...], training=False)
LAMBDA = 100
loss_object = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def generator_loss(disc_generated_output, gen_output, target):
gan_loss = loss_object(tf.ones_like(disc_generated_output), disc_generated_output)
# Mean Absolute Error
l1_loss = tf.reduce_mean(tf.abs(target - gen_output))
total_gen_loss = gan_loss + (LAMBDA * l1_loss)
return total_gen_loss, gan_loss, l1_loss
def Discriminator():
initializer = tf.random_normal_initializer(0.0, 0.02)
inp = tf.keras.layers.Input(shape=[256, 256, 3], name="input_image")
tar = tf.keras.layers.Input(shape=[256, 256, 3], name="target_image")
x = tf.keras.layers.concatenate([inp, tar]) # (batch_size, 256, 256, channels*2)
down1 = downsample(64, 4, False)(x) # (batch_size, 128, 128, 64)
down2 = downsample(128, 4)(down1) # (batch_size, 64, 64, 128)
down3 = downsample(256, 4)(down2) # (batch_size, 32, 32, 256)
zero_pad1 = tf.keras.layers.ZeroPadding2D()(down3) # (batch_size, 34, 34, 256)
conv = tf.keras.layers.Conv2D(
512, 4, strides=1, kernel_initializer=initializer, use_bias=False
)(
zero_pad1
) # (batch_size, 31, 31, 512)
batchnorm1 = tf.keras.layers.BatchNormalization()(conv)
leaky_relu = tf.keras.layers.LeakyReLU()(batchnorm1)
zero_pad2 = tf.keras.layers.ZeroPadding2D()(leaky_relu) # (batch_size, 33, 33, 512)
last = tf.keras.layers.Conv2D(1, 4, strides=1, kernel_initializer=initializer)(
zero_pad2
) # (batch_size, 30, 30, 1)
return tf.keras.Model(inputs=[inp, tar], outputs=last)
discriminator = Discriminator()
tf.keras.utils.plot_model(
discriminator, show_shapes=True, dpi=64, to_file="discriminator.png"
)
disc_out = discriminator([inp[tf.newaxis, ...], gen_output], training=False)
def discriminator_loss(disc_real_output, disc_generated_output):
real_loss = loss_object(tf.ones_like(disc_real_output), disc_real_output)
generated_loss = loss_object(
tf.zeros_like(disc_generated_output), disc_generated_output
)
total_disc_loss = real_loss + generated_loss
return total_disc_loss
generator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
discriminator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
checkpoint_dir = "./training_checkpoints"
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(
generator_optimizer=generator_optimizer,
discriminator_optimizer=discriminator_optimizer,
generator=generator,
discriminator=discriminator,
)
def generate_images(model, test_input, tar):
prediction = model(test_input, training=True)
plt.figure(figsize=(15, 15))
display_list = [test_input[0], tar[0], prediction[0]]
title = ["Input Image", "Ground Truth", "Predicted Image"]
for i in range(3):
plt.subplot(1, 3, i + 1)
plt.title(title[i])
# Getting the pixel values in the [0, 1] range to plot
plt.imshow(display_list[i] * 0.5 + 0.5)
plt.axis("off")
plt.show()
for example_input, example_target in test_dataset.take(2):
generate_images(generator, example_input, example_target)
log_dir = "logs/"
summary_writer = tf.summary.create_file_writer(
log_dir + "fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
)
@tf.function
def train_step(input_image, target, step):
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
gen_output = generator(input_image, training=True)
disc_real_output = discriminator([input_image, target], training=True)
disc_generated_output = discriminator([input_image, gen_output], training=True)
gen_total_loss, gen_gan_loss, gen_l1_loss = generator_loss(
disc_generated_output, gen_output, target
)
disc_loss = discriminator_loss(disc_real_output, disc_generated_output)
generator_gradients = gen_tape.gradient(
gen_total_loss, generator.trainable_variables
)
discriminator_gradients = disc_tape.gradient(
disc_loss, generator.trainable_variables
)
generator_optimizer.apply_gradients(
zip(generator_gradients, generator.trainable_variables, strict=True)
)
discriminator_optimizer.apply_gradients(
zip(discriminator_gradients, generator.trainable_variables, strict=True)
)
with summary_writer.as_default():
tf.summary.scalar("gen_total_loss", gen_total_loss, step=step // 1000)
tf.summary.scalar("gen_gan_loss", gen_gan_loss, step=step // 1000)
tf.summary.scalar("gen_l1_loss", gen_l1_loss, step=step // 1000)
tf.summary.scalar("disc_loss", disc_loss, step=step // 1000)
def fit(train_ds, test_ds, steps):
example_input, example_target = next(iter(test_ds.take(1)))
start = time.time()
for step, (input_image, target) in train_ds.repeat().take(steps).enumerate():
if (step) % 1000 == 0:
display.clear_output(wait=True)
if step != 0:
print(f"Time taken for 1000 steps: {time.time()-start:.2f} sec\n")
start = time.time()
generate_images(generator, example_input, example_target)
print(f"Step: {step//1000}k")
train_step(input_image, target, step)
# Training step
if (step + 1) % 10 == 0:
print(".", end="", flush=True)
if (step + 1) % 5000 == 0:
checkpoint.save(file_prefix=checkpoint_prefix)
fit(train_dataset, test_dataset, steps=40_000)