-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtesting.py
166 lines (129 loc) · 4.92 KB
/
testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import numpy as np
import os
import imageio.v2
import pdb
import tensorflow as tf
import matplotlib.pyplot as plt
def load():
DATA_PATH = os.path.join(
os.path.dirname(os.path.dirname(__file__)), "Data\\dataset"
)
SAVE_PATH = os.path.join(os.getcwd(), "save_folder")
if not os.path.exists(SAVE_PATH):
os.makedirs(SAVE_PATH)
# Reads in the images from our synthetic dataset into a numpy array
images = os.listdir(DATA_PATH)
input_images = np.empty((len(images) - 2, 256, 512))
real_images = np.empty((len(images) - 2, 256, 256))
for i in range(len(images) - 2):
filepath1 = os.path.join(DATA_PATH, images[i])
filepath2 = os.path.join(DATA_PATH, images[i + 2])
arr1 = np.array(imageio.imread(filepath1))
arr2 = np.array(imageio.imread(filepath2))
arr1 = np.dot(arr1[..., :3], [0.2989, 0.5870, 0.1140])
arr2 = np.dot(arr2[..., :3], [0.2989, 0.5870, 0.1140])
arr1 = np.round(arr1, 0)
arr2 = np.round(arr2, 0)
input_images[i] = np.hstack((arr1, arr2))
if i != 0:
real_images[i - 1] = arr1
np.save(os.path.join(SAVE_PATH, "input_images.npy"), input_images)
np.save(os.path.join(SAVE_PATH, "real_images.npy"), real_images)
input_images = np.load(os.path.join(SAVE_PATH, "input_images.npy"))
real_images = np.load(os.path.join(SAVE_PATH, "real_images.npy"))
return input_images, real_images
def to_gif(images):
converted_images = np.clip(images, 0, 255).astype(np.uint8)
imageio.mimsave("./animation.gif", converted_images, fps=25)
# return embed.embed_file("./animation.gif")
input_images, real_images = load()
INP = input_images[0].reshape(256, 512, 1)
OUTPUT_CHANNELS = 3
def downsample(filters, size, apply_batchnorm=True):
initializer = tf.random_normal_initializer(0.0, 0.02)
result = tf.keras.Sequential()
result.add(
tf.keras.layers.Conv2D(
filters,
size,
strides=2,
padding="same",
kernel_initializer=initializer,
use_bias=False,
)
)
if apply_batchnorm:
result.add(tf.keras.layers.BatchNormalization())
result.add(tf.keras.layers.LeakyReLU())
return result
down_model = downsample(3, 4)
down_result = down_model(tf.expand_dims(INP, 0))
print(down_result.shape)
def upsample(filters, size, apply_dropout=False):
initializer = tf.random_normal_initializer(0.0, 0.02)
result = tf.keras.Sequential()
result.add(
tf.keras.layers.Conv2DTranspose(
filters,
size,
strides=2,
padding="same",
kernel_initializer=initializer,
use_bias=False,
)
)
result.add(tf.keras.layers.BatchNormalization())
if apply_dropout:
result.add(tf.keras.layers.Dropout(0.5))
result.add(tf.keras.layers.ReLU())
return result
up_model = upsample(3, 4)
up_result = up_model(down_result)
print(up_result.shape)
def Generator():
inputs = tf.keras.layers.Input(shape=[256, 512, 3])
down_stack = [
downsample(64, 4, apply_batchnorm=False), # (batch_size, 128, 128, 64)
downsample(128, 4), # (batch_size, 64, 64, 128)
downsample(256, 4), # (batch_size, 32, 32, 256)
downsample(512, 4), # (batch_size, 16, 16, 512)
downsample(512, 4), # (batch_size, 8, 8, 512)
downsample(512, 4), # (batch_size, 4, 4, 512)
downsample(512, 4), # (batch_size, 2, 2, 512)
downsample(512, 4), # (batch_size, 1, 1, 512)
]
up_stack = [
upsample(512, 4, apply_dropout=True), # (batch_size, 2, 2, 1024)
upsample(512, 4, apply_dropout=True), # (batch_size, 4, 4, 1024)
upsample(512, 4, apply_dropout=True), # (batch_size, 8, 8, 1024)
upsample(512, 4), # (batch_size, 16, 16, 1024)
upsample(256, 4), # (batch_size, 32, 32, 512)
upsample(128, 4), # (batch_size, 64, 64, 256)
upsample(64, 4), # (batch_size, 128, 128, 128)
]
initializer = tf.random_normal_initializer(0.0, 0.02)
last = tf.keras.layers.Conv2DTranspose(
OUTPUT_CHANNELS,
4,
strides=2,
padding="same",
kernel_initializer=initializer,
activation="tanh",
) # (batch_size, 256, 256, 3)
x = inputs
# Downsampling through the model
skips = []
for down in down_stack:
x = down(x)
skips.append(x)
skips = reversed(skips[:-1])
# Upsampling and establishing the skip connections
for up, skip in zip(up_stack, skips):
x = up(x)
x = tf.keras.layers.Concatenate()([x, skip])
x = last(x)
return tf.keras.Model(inputs=inputs, outputs=x)
generator = Generator()
tf.keras.utils.plot_model(generator, show_shapes=True, dpi=64)
# gen_output = generator(INP[tf.newaxis, ...], training=False)
# plt.imshow(gen_output[0, ...])