forked from pytorch/ao
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
256 lines (245 loc) · 11.5 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torchao
from pathlib import Path
from typing import List, Optional
from generate import (
_load_model,
device_sync,
)
from torchao.quantization import (
quantize_,
int4_weight_only,
int8_weight_only,
int8_dynamic_activation_int8_weight,
fpx_weight_only,
uintx_weight_only,
float8_weight_only,
float8_dynamic_activation_float8_weight,
)
from torchao._models.llama.model import prepare_inputs_for_model
from torchao.quantization import PerRow, PerTensor
from tokenizer import get_tokenizer
import time
from torchao.utils import TORCH_VERSION_AT_LEAST_2_5, unwrap_tensor_subclass
def run_evaluation(
checkpoint_path: Path,
tasks: List[str],
limit: Optional[int] = None,
device = "cuda",
precision = torch.bfloat16,
quantization: Optional[str] = None,
compile=False,
max_length=None,
calibration_tasks: Optional[List[str]] = None,
calibration_limit: Optional[int] = None,
calibration_seq_length: Optional[int] = None,
pad_calibration_inputs: Optional[bool] = False,
):
"""Runs the evaluation of a model using LM Eval."""
print(
f"\nEvaluating model {checkpoint_path} on tasks: {tasks}, limit: {limit}, device: {device}, precision: {precision}, "
+f"quantization: {quantization}, compile: {compile}, max_length: {max_length}, calibration_tasks: {calibration_tasks}, "
+f"calibration_seq_length: {calibration_seq_length}, pad_calibration_inputs: {pad_calibration_inputs}\n"
)
torchao.quantization.utils.recommended_inductor_config_setter()
assert checkpoint_path.is_file(), checkpoint_path
tokenizer_path = checkpoint_path.parent / "tokenizer.model"
assert tokenizer_path.is_file(), str(tokenizer_path)
# Load Model and Tokenizer
print("Loading model ...")
t0 = time.time()
model = _load_model(checkpoint_path, "cpu", precision)
if max_length is None:
max_length = model.config.block_size
device_sync(device=device) # MKG
print(f"Time to load model: {time.time() - t0:.02f} seconds")
tokenizer = get_tokenizer(tokenizer_path, checkpoint_path)
if quantization:
if "spinquant" in quantization:
from torchao.prototype.spinquant import apply_spinquant
apply_spinquant(model)
if "int8wo" in quantization:
quantize_(model, int8_weight_only())
if "int8dq" in quantization:
quantize_(model, int8_dynamic_activation_int8_weight())
if "fp6" in quantization:
quantize_(model, fpx_weight_only(3, 2))
if "int4wo" in quantization and not "gptq" in quantization:
if "hqq" in quantization:
use_hqq = True
else:
use_hqq = False
groupsize=int(quantization.split("-")[1])
assert groupsize in [32,64,128,256], f"int4wo groupsize needs to be one of [32,64,128,256] but got {groupsize}"
quantize_(model.to(device), int4_weight_only(group_size=groupsize, use_hqq=use_hqq))
if "uintx" in quantization:
# uintx-nbits-groupsize
# "uintx-2-64"
if "hqq" in quantization:
use_hqq = True
else:
use_hqq = False
_quant_args = quantization.split("-")
nbits = int(_quant_args[1])
_NBITS_TO_DTYPE = {1: torch.uint1, 2: torch.uint2, 3: torch.uint3, 4: torch.uint4, 5: torch.uint5, 6: torch.uint6, 7: torch.uint7, 8: torch.uint8}
dtype = _NBITS_TO_DTYPE[nbits]
group_size = int(_quant_args[2])
quantize_(model, uintx_weight_only(dtype, group_size, use_hqq=use_hqq))
if "marlin" in quantization:
from torchao.dtypes import MarlinSparseLayout
quantize_(model, int4_weight_only(layout=MarlinSparseLayout()))
if "int4wo" in quantization and "gptq" in quantization:
# avoid circular imports
from torchao._models._eval import MultiTensorInputRecorder
from torchao.quantization.GPTQ_MT import Int4WeightOnlyGPTQQuantizer
groupsize=int(quantization.split("-")[-2])
assert groupsize in [32,64,128,256], f"int4wo groupsize needs to be one of [32,64,128,256] but got {groupsize}"
assert precision==torch.bfloat16, f"{quantization} requires precision or bfloat16 but got {precision}"
assert "cuda" in device, "int4 gptq quantization only works on cuda"
inputs = MultiTensorInputRecorder(
tokenizer,
calibration_seq_length,
prepare_inputs_for_model,
pad_calibration_inputs,
model.config.vocab_size,
device="cpu"
).record_inputs(
calibration_tasks,
calibration_limit,
).get_inputs()
quantizer = Int4WeightOnlyGPTQQuantizer(group_size=groupsize, device=device)
model.setup_caches(max_batch_size=1, max_seq_length=calibration_seq_length)
model = quantizer.quantize(model, inputs).to(device)
else:
if not TORCH_VERSION_AT_LEAST_2_5:
unwrap_tensor_subclass(model)
if "float8wo" in quantization:
quantize_(model, float8_weight_only())
if "float8dq" in quantization:
granularity = str(quantization.split("-")[-1])
if granularity=="tensor":
granularity = PerTensor()
elif granularity=="row":
granularity = PerRow()
else:
if granularity=="float8dq":
granularity = PerTensor()
else:
raise ValueError(f"Unknown granularity {granularity}")
quantize_(model, float8_dynamic_activation_float8_weight(granularity=granularity))
if "autoround" in quantization:
from torchao.prototype.autoround.autoround_llm import quantize_model_with_autoround_
from transformers import AutoTokenizer
from torchao._models.llama.model import TransformerBlock
_tokenizer = AutoTokenizer.from_pretrained(checkpoint_path.parent)
# parse args from quantization string:
# autoround-<model_device>-<quant_lm_head>-<iters>-<groupsize>-<batch_size>-<seqlen>-<nsamples>-<grad_acc_steps>-<c>
_quant_args = quantization.split("-")
_default_quant_args = [False, 200, 128, 8, 2048, 128, 1, 0]
_model_devie = _quant_args[1] if len(_quant_args) > 1 else device
_quant_args = _quant_args[2:]
(
quant_lm_head,
iters,
groupsize,
batch_size,
seqlen,
nsamples,
grad_acc_steps,
compile_optimization_process,
) = [int(x) for x in _quant_args] + _default_quant_args[len(_quant_args) :]
model = model.to(_model_devie)
print(
(
f"Quantizing model with autoround(iters={iters}, groupsize={groupsize}, "
f"quant_lm_head={quant_lm_head}, batch_size={batch_size}, seqlen={seqlen}, nsamples={nsamples}, "
f"gradient_accumulate_steps={grad_acc_steps}, "
f"compile_optimization_process={compile_optimization_process})"
)
)
with torch.device(_model_devie):
model.setup_caches(
max_batch_size=batch_size, max_seq_length=seqlen, training=True
)
if quant_lm_head:
is_target_module = (
lambda mod, fqn: isinstance(mod, TransformerBlock)
or "output" in fqn
)
else:
is_target_module = lambda mod, fqn: isinstance(mod, TransformerBlock)
quantize_model_with_autoround_(
model=model,
tokenizer=_tokenizer,
is_target_module=is_target_module,
bits=4,
seqlen=seqlen,
batch_size=batch_size,
iters=iters,
nsamples=nsamples,
gradient_accumulate_steps=grad_acc_steps,
compile_optimization_process=compile_optimization_process == 1,
)
model.to(device)
model.reset_caches()
if compile:
model = torch.compile(model, mode="max-autotune", fullgraph=True)
with torch.no_grad():
print("Running evaluation ...")
# avoid circular imports
from torchao._models._eval import TransformerEvalWrapper
TransformerEvalWrapper(
model=model.to(device),
tokenizer=tokenizer,
max_seq_length=max_length,
input_prep_func=prepare_inputs_for_model,
device=device,
).run_eval(
tasks=tasks,
limit=limit,
)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Run HF Model Evaluation')
parser.add_argument('--checkpoint_path', type=Path, default=Path("../../../checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth"), help='Model checkpoint path.')
parser.add_argument('--tasks', nargs='+', type=str, default=["wikitext"], help='List of lm-eluther tasks to evaluate usage: --tasks task1 task2')
parser.add_argument('--limit', type=int, default=None, help='Number of eval samples to evaluate')
parser.add_argument('--precision', type=lambda x: getattr(torch, x.split(".")[-1]), default=torch.bfloat16, help='dtype precision to use')
parser.add_argument('--device', type=str, default="cuda", help='Device to use for evaluation')
parser.add_argument(
"-q",
"--quantization",
type=str,
help=(
"Which quantization techniques to apply: int8dq, int8wo, fp6, int4wo-<groupsize>, "
"int4wo-<groupsize>-gptq, autoquant, autoquant-int4, int4wo-<groupsize>-hqq, "
"uintx-<nbits>-<groupsize>, uintx-<nbits>-<groupsize>-hqq, sparse-marlin, spinquant, "
"autoround-<model_device>-<quant_lm_head>-<iters>-<groupsize>-<batch_size>-<seqlen>-<nsamples>-<grad_acc_steps>-<c>, "
"float8wo, float8dq, float8saq"
),
)
parser.add_argument('--compile', action='store_true', help='Whether to compile the model.')
parser.add_argument('--max_length', type=int, default=None, help='Length of text to process at one time')
parser.add_argument('--calibration_tasks', type=str, nargs='+', default=['wikitext'], help='tasks to do gptq calibration on, if doing gptq')
parser.add_argument('--calibration_limit', type=int, default=1000, help='number of samples to use for gptq calibration')
parser.add_argument('--calibration_seq_length', type=int, default=100, help='length of sequences to use for gptq calibration')
parser.add_argument('--pad_calibration_inputs', type=bool, default=False, help='pads sequences shorter than calibration_seq_length to that length, yielding more calibration inputs but running much slower')
args = parser.parse_args()
run_evaluation(
args.checkpoint_path,
args.tasks,
args.limit,
args.device,
args.precision,
args.quantization,
args.compile,
args.max_length,
args.calibration_tasks,
args.calibration_limit,
args.calibration_seq_length,
args.pad_calibration_inputs,
)