forked from pytorch/ao
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_activation_scale.py
163 lines (130 loc) · 4.76 KB
/
linear_activation_scale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
from torch.utils._python_dispatch import return_and_correct_aliasing
from torchao.utils import (
TORCH_VERSION_AT_LEAST_2_5,
TorchAOBaseTensor,
)
__all__ = [
"WeightTensorWithLinearActivationScaleMetadata",
"to_weight_tensor_with_linear_activation_scale_metadata",
]
aten = torch.ops.aten
class WeightTensorWithLinearActivationScaleMetadata(TorchAOBaseTensor):
"""
Tensor subclass that wraps a weight tensor and provides metadata for linear activation scaling.
Right now we hardcode how we apply the scale:
scaled_linear_act = input_act / scale
out = F.linear(scaled_linear_act, weight, ...)
We can generalize this to accept a function as well if needed.
Args:
original_weight_tensor (torch.Tensor): The weight tensor to be wrapped.
scale (torch.Tensor): The scale tensor to be applied to activation.
"""
original_weight_tensor: torch.Tensor
scale: torch.Tensor
def __new__(
cls,
original_weight_tensor: torch.Tensor,
scale: torch.Tensor,
):
kwargs = {}
dtype = original_weight_tensor.dtype
kwargs["dtype"] = dtype
kwargs["requires_grad"] = False
kwargs["device"] = original_weight_tensor.device
shape = original_weight_tensor.shape
return torch.Tensor._make_wrapper_subclass(cls, shape, **kwargs) # type: ignore[attr-defined]
def __init__(
self,
original_weight_tensor: torch.Tensor,
scale: torch.Tensor,
):
self.original_weight_tensor = original_weight_tensor
self.scale = scale
def __repr__(self):
return f"WeightTensorWithLinearActivationScaleMetadata({self.original_weight_tensor}, scale={self.scale}"
def __tensor_flatten__(self):
tensor_data = ["original_weight_tensor", "scale"]
return tensor_data, []
@classmethod
def __tensor_unflatten__(
cls, tensor_data_dict, tensor_attributes, outer_size, outer_stride
):
return cls(
tensor_data_dict["original_weight_tensor"],
tensor_data_dict["scale"],
)
@staticmethod
def _quantized_linear_op(
input_tensor: torch.Tensor, weight_tensor: torch.Tensor, bias: torch.Tensor
):
original_weight_tensor = weight_tensor.original_weight_tensor
scale = weight_tensor.scale
# Note: we can make this function configurable as well
scaled_input_act = input_tensor / scale
return torch.nn.functional.linear(
scaled_input_act, original_weight_tensor, bias
)
@classmethod
def from_float(
cls,
input_float: torch.Tensor,
scale: torch.Tensor,
):
return cls(input_float, scale)
def _apply_fn_to_data(self, fn):
return self.__class__(
fn(self.original_weight_tensor),
fn(self.scale),
)
def to(self, *args, **kwargs):
kwargs = self._get_to_kwargs(*args, **kwargs)
device = kwargs.pop("device")
return self.__class__(
self.original_weight_tensor.to(device),
self.scale.to(device),
)
implements = WeightTensorWithLinearActivationScaleMetadata.implements
@implements(torch.nn.functional.linear)
def _(func, types, args, kwargs):
input_tensor, weight_tensor, bias = (
args[0],
args[1],
args[2] if len(args) > 2 else None,
)
if isinstance(weight_tensor, WeightTensorWithLinearActivationScaleMetadata):
return weight_tensor._quantized_linear_op(input_tensor, weight_tensor, bias)
raise NotImplementedError(
"LinearActivationQuantizedTensor: No specialized dispatch found for linear op"
)
@implements(aten.detach.default)
def _(func, types, args, kwargs):
return return_and_correct_aliasing(
func, args, kwargs, args[0]._apply_fn_to_data(torch.detach)
)
@implements(aten.clone.default)
def _(func, types, args, kwargs):
return return_and_correct_aliasing(
func, args, kwargs, args[0]._apply_fn_to_data(torch.clone)
)
@implements(aten._to_copy.default)
def _(func, types, args, kwargs):
return return_and_correct_aliasing(
func,
args,
kwargs,
args[0].to(*args[1:], **kwargs)._apply_fn_to_data(torch.clone),
)
@implements(aten.t.default)
def _(func, types, args, kwargs):
return return_and_correct_aliasing(
func, args, kwargs, args[0]._apply_fn_to_data(torch.t)
)
to_weight_tensor_with_linear_activation_scale_metadata = (
WeightTensorWithLinearActivationScaleMetadata.from_float
)
if TORCH_VERSION_AT_LEAST_2_5:
# Allow a model with LinearActivationQuantizedTensor weights to be loaded with `weights_only=True`
torch.serialization.add_safe_globals(
[WeightTensorWithLinearActivationScaleMetadata]
)