forked from ethanjperez/pytorch-pretrained-BERT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbertology.py
310 lines (253 loc) · 16.7 KB
/
bertology.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#!/usr/bin/env python3
import os
import argparse
import logging
from datetime import timedelta, datetime
from tqdm import tqdm
import numpy as np
import torch
from torch.utils.data import DataLoader, SequentialSampler, TensorDataset, Subset
from torch.utils.data.distributed import DistributedSampler
from torch.nn import CrossEntropyLoss, MSELoss
from pytorch_pretrained_bert import BertForSequenceClassification, BertTokenizer
from run_classifier_dataset_utils import processors, output_modes, convert_examples_to_features, compute_metrics
logger = logging.getLogger(__name__)
def entropy(p):
plogp = p * torch.log(p)
plogp[p == 0] = 0
return -plogp.sum(dim=-1)
def print_1d_tensor(tensor, prefix=""):
if tensor.dtype != torch.long:
logger.info(prefix + "\t".join(f"{x:.5f}" for x in tensor.cpu().data))
else:
logger.info(prefix + "\t".join(f"{x:d}" for x in tensor.cpu().data))
def print_2d_tensor(tensor):
logger.info("lv, h >\t" + "\t".join(f"{x + 1}" for x in range(len(tensor))))
for row in range(len(tensor)):
print_1d_tensor(tensor[row], prefix=f"layer {row + 1}:\t")
def compute_heads_importance(args, model, eval_dataloader, compute_entropy=True, compute_importance=True, head_mask=None):
""" Example on how to use model outputs to compute:
- head attention entropy (activated by setting output_attentions=True when we created the model
- head importance scores according to http://arxiv.org/abs/1905.10650
(activated by setting keep_multihead_output=True when we created the model)
"""
# Prepare our tensors
n_layers, n_heads = model.bert.config.num_hidden_layers, model.bert.config.num_attention_heads
head_importance = torch.zeros(n_layers, n_heads).to(args.device)
attn_entropy = torch.zeros(n_layers, n_heads).to(args.device)
preds = None
labels = None
tot_tokens = 0.0
for step, batch in enumerate(tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
batch = tuple(t.to(args.device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
all_attentions, logits = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, head_mask=head_mask)
if compute_entropy:
# Update head attention entropy
for layer, attn in enumerate(all_attentions):
masked_entropy = entropy(attn.detach()) * input_mask.float().unsqueeze(1)
attn_entropy[layer] += masked_entropy.sum(-1).sum(0).detach()
if compute_importance:
# Update head importance scores with regards to our loss
# First, backpropagate to populate the gradients
if args.output_mode == "classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, args.num_labels), label_ids.view(-1))
elif args.output_mode == "regression":
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), label_ids.view(-1))
loss.backward()
# Second, compute importance scores according to http://arxiv.org/abs/1905.10650
multihead_outputs = model.bert.get_multihead_outputs()
for layer, mh_layer_output in enumerate(multihead_outputs):
dot = torch.einsum("bhli,bhli->bhl", [mh_layer_output.grad, mh_layer_output])
head_importance[layer] += dot.abs().sum(-1).sum(0).detach()
# Also store our logits/labels if we want to compute metrics afterwards
if preds is None:
preds = logits.detach().cpu().numpy()
labels = label_ids.detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
labels = np.append(labels, label_ids.detach().cpu().numpy(), axis=0)
tot_tokens += input_mask.float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
exponent = 2
norm_by_layer = torch.pow(torch.pow(head_importance, exponent).sum(-1), 1/exponent)
head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20
if not args.dont_normalize_global_importance:
head_importance = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
return attn_entropy, head_importance, preds, labels
def run_model():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', type=str, default='bert-base-cased-finetuned-mrpc', help='pretrained model name or path to local checkpoint')
parser.add_argument("--task_name", type=str, default='mrpc', help="The name of the task to train.")
parser.add_argument("--data_dir", type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--output_dir", type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--data_subset", type=int, default=-1, help="If > 0: limit the data to a subset of data_subset instances.")
parser.add_argument("--overwrite_output_dir", action='store_true', help="Whether to overwrite data in output directory")
parser.add_argument("--dont_normalize_importance_by_layer", action='store_true', help="Don't normalize importance score by layers")
parser.add_argument("--dont_normalize_global_importance", action='store_true', help="Don't normalize all importance scores between 0 and 1")
parser.add_argument("--try_masking", action='store_true', help="Whether to try to mask head until a threshold of accuracy.")
parser.add_argument("--masking_threshold", default=0.9, type=float, help="masking threshold in term of metrics"
"(stop masking when metric < threshold * original metric value).")
parser.add_argument("--masking_amount", default=0.1, type=float, help="Amount to heads to masking at each masking step.")
parser.add_argument("--metric_name", default="acc", type=str, help="Metric to use for head masking.")
parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--batch_size", default=1, type=int, help="Batch size.")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available")
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
args = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
args.device = torch.device("cuda", args.local_rank)
n_gpu = 1
torch.distributed.init_process_group(backend='nccl') # Initializes the distributed backend
# Setup logging
logging.basicConfig(level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, n_gpu, bool(args.local_rank != -1)))
# Set seeds
np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed(args.seed)
# Prepare GLUE task
task_name = args.task_name.lower()
processor = processors[task_name]()
label_list = processor.get_labels()
args.output_mode = output_modes[task_name]
args.num_labels = len(label_list)
# Prepare output directory
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
# Load model & tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only one distributed process download model & vocab
tokenizer = BertTokenizer.from_pretrained(args.model_name_or_path)
# Load a model with all BERTology options on:
# output_attentions => will output attention weights
# keep_multihead_output => will store gradient of attention head outputs for head importance computation
# see: http://arxiv.org/abs/1905.10650
model = BertForSequenceClassification.from_pretrained(args.model_name_or_path,
num_labels=args.num_labels,
output_attentions=True,
keep_multihead_output=True)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only one distributed process download model & vocab
model.to(args.device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True)
model.eval()
# Prepare dataset for the GLUE task
eval_examples = processor.get_dev_examples(args.data_dir)
cached_eval_features_file = os.path.join(args.data_dir, 'dev_{0}_{1}_{2}'.format(
list(filter(None, args.model_name_or_path.split('/'))).pop(), str(args.max_seq_length), str(task_name)))
try:
eval_features = torch.load(cached_eval_features_file)
except:
eval_features = convert_examples_to_features(eval_examples, label_list, args.max_seq_length, tokenizer, args.output_mode)
if args.local_rank in [-1, 0]:
logger.info("Saving eval features to cache file %s", cached_eval_features_file)
torch.save(eval_features, cached_eval_features_file)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long if args.output_mode == "classification" else torch.float)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
if args.data_subset > 0:
eval_data = Subset(eval_data, list(range(min(args.data_subset, len(eval_data)))))
eval_sampler = SequentialSampler(eval_data) if args.local_rank == -1 else DistributedSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size)
# Print/save training arguments
print(args)
torch.save(args, os.path.join(args.output_dir, 'run_args.bin'))
# Compute head entropy and importance score
attn_entropy, head_importance, _, _ = compute_heads_importance(args, model, eval_dataloader)
# Print/save matrices
np.save(os.path.join(args.output_dir, 'attn_entropy.npy'), attn_entropy.detach().cpu().numpy())
np.save(os.path.join(args.output_dir, 'head_importance.npy'), head_importance.detach().cpu().numpy())
logger.info("Attention entropies")
print_2d_tensor(attn_entropy)
logger.info("Head importance scores")
print_2d_tensor(head_importance)
logger.info("Head ranked by importance scores")
head_ranks = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device)
head_ranks[head_importance.view(-1).sort(descending=True)[1]] = torch.arange(head_importance.numel(), device=args.device)
head_ranks = head_ranks.view_as(head_importance)
print_2d_tensor(head_ranks)
# Do masking if we want to
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
_, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
original_score = compute_metrics(task_name, preds, labels)[args.metric_name]
logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold)
new_head_mask = torch.ones_like(head_importance)
num_to_mask = max(1, int(new_head_mask.numel() * args.masking_amount))
current_score = original_score
while current_score >= original_score * args.masking_threshold:
head_mask = new_head_mask.clone() # save current head mask
# heads from least important to most - keep only not-masked heads
head_importance[head_mask == 0.0] = float('Inf')
current_heads_to_mask = head_importance.view(-1).sort()[1]
if len(current_heads_to_mask) <= num_to_mask:
break
# mask heads
current_heads_to_mask = current_heads_to_mask[:num_to_mask]
logger.info("Heads to mask: %s", str(current_heads_to_mask.tolist()))
new_head_mask = new_head_mask.view(-1)
new_head_mask[current_heads_to_mask] = 0.0
new_head_mask = new_head_mask.view_as(head_mask)
print_2d_tensor(new_head_mask)
# Compute metric and head importance again
_, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
current_score = compute_metrics(task_name, preds, labels)[args.metric_name]
logger.info("Masking: current score: %f, remaning heads %d (%.1f percents)", current_score, new_head_mask.sum(), new_head_mask.sum()/new_head_mask.numel() * 100)
logger.info("Final head mask")
print_2d_tensor(head_mask)
np.save(os.path.join(args.output_dir, 'head_mask.npy'), head_mask.detach().cpu().numpy())
# Try pruning and test time speedup
# Pruning is like masking but we actually remove the masked weights
before_time = datetime.now()
_, _, preds, labels = compute_heads_importance(args, model, eval_dataloader,
compute_entropy=False, compute_importance=False, head_mask=head_mask)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
score_masking = compute_metrics(task_name, preds, labels)[args.metric_name]
original_time = datetime.now() - before_time
original_num_params = sum(p.numel() for p in model.parameters())
heads_to_prune = dict((layer, (1 - head_mask[layer].long()).nonzero().tolist()) for layer in range(len(head_mask)))
assert sum(len(h) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item()
model.bert.prune_heads(heads_to_prune)
pruned_num_params = sum(p.numel() for p in model.parameters())
before_time = datetime.now()
_, _, preds, labels = compute_heads_importance(args, model, eval_dataloader,
compute_entropy=False, compute_importance=False, head_mask=None)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
score_pruning = compute_metrics(task_name, preds, labels)[args.metric_name]
new_time = datetime.now() - before_time
logger.info("Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)", original_num_params, pruned_num_params, pruned_num_params/original_num_params * 100)
logger.info("Pruning: score with masking: %f score with pruning: %f", score_masking, score_pruning)
logger.info("Pruning: speed ratio (new timing / original timing): %f percents", original_time/new_time * 100)
if __name__ == '__main__':
run_model()