-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsphere.py
61 lines (50 loc) · 1.97 KB
/
sphere.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""A ray-traceable sphere is a sphere with a given
centre and radius and a given surface material.
It needs an intersect method that returns the
point of intersection of a given ray with the
sphere and a normal method that returns the
surface at a given point on the sphere surface."""
from geom3 import Vector3, Point3, Ray3, dot, unit
from math import sqrt
from hit import Hit
class Sphere(object):
"""A ray-traceable sphere"""
def __init__(self, centre, radius, material):
"""Create a sphere with a given centre point, radius
and surface material"""
self.centre = centre
self.radius = radius
self.material = material
def normal(self, p):
"""The surface normal at the given point on the sphere"""
return unit(p - self.centre)
def intersect(self, ray):
"""The ray t value of the first intersection point of the
ray with self, or None if no intersection occurs"""
hit = None
q = self.centre - ray.start
vDotQ = dot(ray.dir, q)
squareDiffs = dot(q, q) - self.radius*self.radius
discrim = vDotQ * vDotQ - squareDiffs
if discrim >= 0:
root = sqrt(discrim)
t0 = (vDotQ - root)
t1 = (vDotQ + root)
if t0 < t1:
hit = Hit(self, ray, t0, t1, None, self.material)
else:
hit = Hit(self, ray, t1, t0, None, self.material)
if hit.entry > 0:
hit.normal = self.normal(ray.pos(hit.entry))
if hit.exit > 0:
hit.normal2 = self.normal(ray.pos(hit.exit))
return hit
def __repr__(self):
return "Sphere(%s, %.3f)" % (str(self.centre), self.radius)
# Two simple sanity tests if module is run directly
if __name__ == "__main__":
sphere = Sphere(Point3(1,0,0), 1, None)
ray = Ray3(Point3(1,0,5), Vector3(0,0,-1))
missingRay = Ray3(Point3(1,0,5), Vector3(0,0,1))
assert abs(sphere.intersect(ray) - 4.0) < 0.00001
assert sphere.intersect(missingRay) is None