-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkvmbox.c
250 lines (219 loc) · 6.23 KB
/
kvmbox.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
// Copyright (c) 2011 Scott Mansell <[email protected]>
// Licensed under the MIT license
// Refer to the included LICENCE file.
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <linux/kvm.h>
#include <malloc.h>
#include <assert.h>
#include <stdint.h>
#include <stropts.h>
#include "kvmbox.h"
/* callback definitions as shown in Listing 2 go here */
void load_file(void *mem, const char *filename)
{
int fd;
int nr;
fd = open(filename, O_RDONLY);
if (fd == -1) {
fprintf(stderr, "Cannot open %s", filename);
perror("open");
exit(1);
}
while ((nr = read(fd, mem, 4096)) != -1 && nr != 0)
mem += nr;
if (nr == -1) {
perror("read");
exit(1);
}
close(fd);
}
void printRegs(struct kvm *kvm) {
struct kvm_regs regs;
struct kvm_sregs sregs;
int r = ioctl(kvm->vcpu_fd, KVM_GET_REGS, ®s);
int s = ioctl(kvm->vcpu_fd, KVM_GET_SREGS, &sregs);
if (r == -1 || s == -1) {
fprintf(stderr, "Get Regs failed");
return;
}
debugf("rax: 0x%08llx\n", regs.rax);
debugf("rbx: 0x%08llx\n", regs.rbx);
debugf("rcx: 0x%08llx\n", regs.rcx);
debugf("rdx: 0x%08llx\n", regs.rdx);
debugf("rsi: 0x%08llx\n", regs.rsi);
debugf("rdi: 0x%08llx\n", regs.rdi);
debugf("rsp: 0x%08llx\n", regs.rsp);
debugf("rbp: 0x%08llx\n", regs.rbp);
debugf("rip: 0x%08llx\n", regs.rip);
debugf("=====================\n");
debugf("cr0: 0x%016llx\n", sregs.cr0);
debugf("cr2: 0x%016llx\n", sregs.cr2);
debugf("cr3: 0x%016llx\n", sregs.cr3);
debugf("cr4: 0x%016llx\n", sregs.cr4);
debugf("cr8: 0x%016llx\n", sregs.cr8);
debugf("gdt: 0x%04x:0x%08llx\n", sregs.gdt.limit, sregs.gdt.base);
debugf("cs: 0x%08llx ds: 0x%08llx es: 0x%08llx\nfs: 0x%08llx gs: 0x%08llx ss: 0x%08llx\n",
sregs.cs.base, sregs.ds.base, sregs.es.base, sregs.fs.base, sregs.gs.base, sregs.ss.base);
}
void mmio_handler(struct kvm *kvm) {
uint32_t addr = kvm->run->mmio.phys_addr;
if(kvm->run->mmio.is_write) {
debugf("Write %i to 0x%08x\n", kvm->run->mmio.len, addr);
debugf("0x%08x\n",*(unsigned int*)(kvm->run->mmio.data));
} else {
debugf("Read %i from 0x%08x\n", kvm->run->mmio.len, addr);
}
}
void smbusIO(uint16_t, uint8_t, uint8_t, uint8_t*);
void pciConfigIO(uint16_t, uint8_t, uint8_t, uint8_t*);
void io_handler(struct kvm *kvm) {
unsigned char *p = (unsigned char *)(kvm->run) + kvm->run->io.data_offset;
assert(kvm->run->io.count == 1);
uint16_t port = kvm->run->io.port;
if(port >= 0xc000 && port <= 0xc008)
smbusIO(port, kvm->run->io.direction, kvm->run->io.size, p);
else if(port == 0xcf8 || port == 0xcfc)
pciConfigIO(port, kvm->run->io.direction, kvm->run->io.size, p);
else if(kvm->run->io.direction) {
debugf("I/O port 0x%04x out ", kvm->run->io.port);
switch(kvm->run->io.size) {
case 1:
debugf("0x%02hhx\n", *(unsigned char*)p);
break;
case 2:
debugf("0x%04hx\n", *(unsigned short*)p);
break;
case 4:
debugf("0x%08x\n", *(unsigned int*)p);
}
} else {
debugf("I/O 0x%04x in ", kvm->run->io.port);
//*p = 0x20;
switch(kvm->run->io.size) {
case 1:
debugf("byte\n");
break;
case 2:
debugf("short\n");
break;
case 4:
debugf("int\n");
}
}
//sleep(1);
}
int vcpu_run(struct kvm *kvm) {
int r;
r = ioctl(kvm->vm_fd, KVM_CREATE_VCPU, 0);
if (r == -1) {
fprintf(stderr, "kvm_create_vcpu: %m\n");
return -1;
}
kvm->vcpu_fd = r;
long mmap_size = ioctl(kvm->fd, KVM_GET_VCPU_MMAP_SIZE, 0);
if (mmap_size == -1) {
fprintf(stderr, "get vcpu mmap size: %m\n");
return -1;
}
void *map = mmap(NULL, mmap_size, PROT_READ|PROT_WRITE, MAP_SHARED,
kvm->vcpu_fd, 0);
if (map == MAP_FAILED) {
fprintf(stderr, "mmap vcpu area: %m\n");
return -1;
}
kvm->run = (struct kvm_run*) map;
while (1) {
ioctl(kvm->vcpu_fd, KVM_RUN, 0);
switch(kvm->run->exit_reason){
case KVM_EXIT_IO:
io_handler(kvm);
break;
case KVM_EXIT_HLT:
debugf("halted\n");
printRegs(kvm);
return -1;
case KVM_EXIT_MMIO:
mmio_handler(kvm);
break;
case KVM_EXIT_INTR:
debugf("Interrupt\n");
return 0;
case KVM_EXIT_SHUTDOWN:
printRegs(kvm);
debugf("Triple fault\n");
return -1;
case KVM_EXIT_FAIL_ENTRY:
debugf("Failed to enter emulation: %llx\n", kvm->run->fail_entry.hardware_entry_failure_reason);
return -1;
default:
debugf("unhandled exit reason: %i\n", kvm->run->exit_reason);
printRegs(kvm);
return -1;
}
}
}
struct kvm *vm_init(int argc, char *argv[]) {
struct kvm *kvm = malloc(sizeof(struct kvm));
int fd, r;
fd = open("/dev/kvm", O_RDWR);
if (fd == -1) {
perror("open /dev/kvm");
return NULL;
}
kvm->fd = fd;
r = ioctl(kvm->fd, KVM_GET_API_VERSION, 0);
assert(r == 12);
fd = ioctl(kvm->fd, KVM_CREATE_VM, 0);
if (fd == -1) {
fprintf(stderr, "kvm_create_vm: %m\n");
return NULL;
}
kvm->vm_fd = fd;
// Give intel it's TSS space, I think this address is unused.
r = ioctl(kvm->vm_fd, KVM_SET_TSS_ADDR, 0x0f000000);
if (r == -1) {
fprintf(stderr, "Error assigning TSS space: %m\n");
return NULL;
}
kvm->ram = memalign(0x00400000, 0x04000000); // 64mb of 4mb aligned memory
struct kvm_userspace_memory_region memory = {
.memory_size = 0x04000000,
.guest_phys_addr = 0x0,
.userspace_addr = (unsigned long) kvm->ram,
.flags = 0,
.slot = 0,
};
r = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &memory);
if (r == -1) {
fprintf(stderr, "create_userspace_phys_mem: %i\n", r);
return NULL;
}
load_file(kvm->ram + 0x000f0000, "loader");
load_file(kvm->ram + 0x00000000, argv[1]);
kvm->rom = memalign(0x00100000, 0x00100000); //1mb of 1mb aligned
struct kvm_userspace_memory_region rom = {
.memory_size = 0x00100000,
.guest_phys_addr = 0xfff00000,
.userspace_addr = (unsigned long) kvm->rom,
.flags = 0,
.slot = 1,
};
r = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &rom);
if (r == -1) {
fprintf(stderr, "create_userspace_phys_mem: %i\n", r);
return NULL;
}
load_file(kvm->rom, argv[2]);
((unsigned char*)kvm->ram)[0x6b7] = 0x90;
((unsigned char*)kvm->ram)[0x6b8] = 0x90;
((unsigned char*)kvm->ram)[0x6b9] = 0x90;
((unsigned char*)kvm->ram)[0x6ba] = 0x90;
((unsigned char*)kvm->ram)[0x6bb] = 0x90;
return kvm;
}