-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathingest.py
39 lines (33 loc) · 1.09 KB
/
ingest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
"""
本程序主要用于读取指定目录下所有研报文本,建立索引.
"""
from pathlib import Path
from langchain.text_splitter import CharacterTextSplitter
import faiss
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
import pickle
from dotenv import load_dotenv
load_dotenv()
# 下面开始处理该目录下所有研报文本,用于构建研报知识库
ps = list(Path("doc/").glob("**/*.txt"))
data = []
sources = []
for p in ps:
with open(p, encoding="utf-8") as f:
data.append(f.read())
sources.append(p)
# 分割文档,防止单个文档过长.
text_splitter = CharacterTextSplitter(chunk_size=1500, separator="\n")
docs = []
metadatas = []
for i, d in enumerate(data):
splits = text_splitter.split_text(d)
docs.extend(splits)
metadatas.extend([{"source": sources[i]}] * len(splits))
# 为文档计算向量,构建索引库
store = FAISS.from_texts(docs, OpenAIEmbeddings(), metadatas=metadatas)
faiss.write_index(store.index, "docs.index")
store.index = None
with open("faiss_store.pkl", "wb") as f:
pickle.dump(store, f)