-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathinput_data.cpp
196 lines (159 loc) · 6.47 KB
/
input_data.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#include <filesystem>
#include <nlohmann/json.hpp>
#include "input_data.hpp"
#include "cv_utils.hpp"
namespace fs = std::filesystem;
using namespace torch::indexing;
using json = nlohmann::json;
namespace ns{ InputData inputDataFromNerfStudio(const std::string &projectRoot); }
namespace cm{ InputData inputDataFromColmap(const std::string &projectRoot); }
namespace osfm { InputData inputDataFromOpenSfM(const std::string &projectRoot); }
InputData inputDataFromX(const std::string &projectRoot){
fs::path root(projectRoot);
if (fs::exists(root / "transforms.json")){
return ns::inputDataFromNerfStudio(projectRoot);
}else if (fs::exists(root / "sparse") || fs::exists(root / "cameras.bin")){
return cm::inputDataFromColmap(projectRoot);
}else if (fs::exists(root / "reconstruction.json")){
return osfm::inputDataFromOpenSfM(projectRoot);
}else if (fs::exists(root / "opensfm" / "reconstruction.json")){
return osfm::inputDataFromOpenSfM((root / "opensfm").string());
}else{
throw std::runtime_error("Invalid project folder (must be either a colmap or nerfstudio project folder)");
}
}
torch::Tensor Camera::getIntrinsicsMatrix(){
return torch::tensor({{fx, 0.0f, cx},
{0.0f, fy, cy},
{0.0f, 0.0f, 1.0f}}, torch::kFloat32);
}
void Camera::loadImage(float downscaleFactor){
// Populates image and K, then updates the camera parameters
// Caution: this function has destructive behaviors
// and should be called only once
if (image.numel()) std::runtime_error("loadImage already called");
std::cout << "Loading " << filePath << std::endl;
cv::Mat cImg = imreadRGB(filePath);
float rescaleF = 1.0f;
// If camera intrinsics don't match the image dimensions
if (cImg.rows != height || cImg.cols != width){
rescaleF = static_cast<float>(cImg.rows) / static_cast<float>(height);
}
fx *= rescaleF;
fy *= rescaleF;
cx *= rescaleF;
cy *= rescaleF;
if (downscaleFactor > 1.0f){
float scaleFactor = 1.0f / downscaleFactor;
cv::resize(cImg, cImg, cv::Size(), scaleFactor, scaleFactor, cv::INTER_AREA);
fx *= scaleFactor;
fy *= scaleFactor;
cx *= scaleFactor;
cy *= scaleFactor;
}
K = getIntrinsicsMatrix();
cv::Rect roi;
if (hasDistortionParameters()){
// Undistort
std::vector<float> distCoeffs = undistortionParameters();
cv::Mat cK = floatNxNtensorToMat(K);
cv::Mat newK = cv::getOptimalNewCameraMatrix(cK, distCoeffs, cv::Size(cImg.cols, cImg.rows), 0, cv::Size(), &roi);
cv::Mat undistorted = cv::Mat::zeros(cImg.rows, cImg.cols, cImg.type());
cv::undistort(cImg, undistorted, cK, distCoeffs, newK);
image = imageToTensor(undistorted);
K = floatNxNMatToTensor(newK);
}else{
roi = cv::Rect(0, 0, cImg.cols, cImg.rows);
image = imageToTensor(cImg);
}
// Crop to ROI
image = image.index({Slice(roi.y, roi.y + roi.height), Slice(roi.x, roi.x + roi.width), Slice()});
// Update parameters
height = image.size(0);
width = image.size(1);
fx = K[0][0].item<float>();
fy = K[1][1].item<float>();
cx = K[0][2].item<float>();
cy = K[1][2].item<float>();
}
torch::Tensor Camera::getImage(int downscaleFactor){
if (downscaleFactor <= 1) return image;
else{
// torch::jit::script::Module container = torch::jit::load("gt.pt");
// return container.attr("val").toTensor();
if (imagePyramids.find(downscaleFactor) != imagePyramids.end()){
return imagePyramids[downscaleFactor];
}
// Rescale, store and return
cv::Mat cImg = tensorToImage(image);
cv::resize(cImg, cImg, cv::Size(cImg.cols / downscaleFactor, cImg.rows / downscaleFactor), 0.0, 0.0, cv::INTER_AREA);
torch::Tensor t = imageToTensor(cImg);
imagePyramids[downscaleFactor] = t;
return t;
}
}
bool Camera::hasDistortionParameters(){
return k1 != 0.0f || k2 != 0.0f || k3 != 0.0f || p1 != 0.0f || p2 != 0.0f;
}
std::vector<float> Camera::undistortionParameters(){
std::vector<float> p = { k1, k2, p1, p2, k3, 0.0f, 0.0f, 0.0f };
return p;
}
std::tuple<std::vector<Camera>, Camera *> InputData::getCameras(bool validate, const std::string &valImage){
if (!validate) return std::make_tuple(cameras, nullptr);
else{
size_t valIdx = -1;
std::srand(42);
if (valImage == "random"){
valIdx = std::rand() % cameras.size();
}else{
for (size_t i = 0; i < cameras.size(); i++){
if (fs::path(cameras[i].filePath).filename().string() == valImage){
valIdx = i;
break;
}
}
if (valIdx == -1) throw std::runtime_error(valImage + " not in the list of cameras");
}
std::vector<Camera> cams;
Camera *valCam = nullptr;
for (size_t i = 0; i < cameras.size(); i++){
if (i != valIdx) cams.push_back(cameras[i]);
else valCam = &cameras[i];
}
return std::make_tuple(cams, valCam);
}
}
void InputData::saveCameras(const std::string &filename, bool keepCrs){
json j = json::array();
for (size_t i = 0; i < cameras.size(); i++){
Camera &cam = cameras[i];
json camera = json::object();
camera["id"] = i;
camera["img_name"] = fs::path(cam.filePath).filename().string();
camera["width"] = cam.width;
camera["height"] = cam.height;
camera["fx"] = cam.fx;
camera["fy"] = cam.fy;
torch::Tensor R = cam.camToWorld.index({Slice(None, 3), Slice(None, 3)});
torch::Tensor T = cam.camToWorld.index({Slice(None, 3), Slice(3,4)}).squeeze();
// Flip z and y
R = torch::matmul(R, torch::diag(torch::tensor({1.0f, -1.0f, -1.0f})));
if (keepCrs) T = (T / scale) + translation;
std::vector<float> position(3);
std::vector<std::vector<float>> rotation(3, std::vector<float>(3));
for (int i = 0; i < 3; i++) {
position[i] = T[i].item<float>();
for (int j = 0; j < 3; j++) {
rotation[i][j] = R[i][j].item<float>();
}
}
camera["position"] = position;
camera["rotation"] = rotation;
j.push_back(camera);
}
std::ofstream of(filename);
of << j;
of.close();
std::cout << "Wrote " << filename << std::endl;
}