diff --git a/.github/workflows/test.yaml b/.github/workflows/test.yaml new file mode 100644 index 00000000..a1a30659 --- /dev/null +++ b/.github/workflows/test.yaml @@ -0,0 +1,20 @@ +name: Tests + +on: + push: + branches: + - '**' + pull_request: + branches: + - '**' + +jobs: + + build: + + runs-on: ubuntu-latest + + steps: + - uses: actions/checkout@v3 + - name: test XML parsing + run: perl t/pubmed_xml.t diff --git a/data/pubmed_37189341.xml b/data/pubmed_37189341.xml new file mode 100644 index 00000000..170e11f1 --- /dev/null +++ b/data/pubmed_37189341.xml @@ -0,0 +1,676 @@ + + + + + + 37189341 + + 2023 + 05 + 17 + + + 2023 + 05 + 30 + +
+ + 2218-273X + + 13 + 4 + + 2023 + Mar + 25 + + + Biomolecules + Biomolecules + + Regulation of the SUV39H Family Methyltransferases: Insights from Fission Yeast. + 593 + 10.3390/biom13040593 + + Histones, which make up nucleosomes, undergo various post-translational modifications, such as acetylation, methylation, phosphorylation, and ubiquitylation. In particular, histone methylation serves different cellular functions depending on the location of the amino acid residue undergoing modification, and is tightly regulated by the antagonistic action of histone methyltransferases and demethylases. The SUV39H family of histone methyltransferases (HMTases) are evolutionarily conserved from fission yeast to humans and play an important role in the formation of higher-order chromatin structures called heterochromatin. The SUV39H family HMTases catalyzes the methylation of histone H3 lysine 9 (H3K9), and this modification serves as a binding site for heterochromatin protein 1 (HP1) to form a higher-order chromatin structure. While the regulatory mechanism of this family of enzymes has been extensively studied in various model organisms, Clr4, a fission yeast homologue, has made an important contribution. In this review, we focus on the regulatory mechanisms of the SUV39H family of proteins, in particular, the molecular mechanisms revealed by the studies of the fission yeast Clr4, and discuss their generality in comparison to other HMTases. + + + + Nakamura + Rinko + R + 0000-0001-5248-3540 + + Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan. + + + Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan. + + + + Nakayama + Jun-Ichi + JI + 0000-0002-5597-8239 + + Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan. + + + Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan. + + + + eng + + Journal Article + Review + Research Support, Non-U.S. Gov't + + + 2023 + 03 + 25 + +
+ + Switzerland + Biomolecules + 101596414 + 2218-273X + + + + EC 2.1.1.43 + Histone-Lysine N-Methyltransferase + + + 0 + Histones + + + EC 2.1.1.- + Histone Methyltransferases + + + 0 + Chromatin + + + 0 + Heterochromatin + + + 0 + Cell Cycle Proteins + + + EC 2.1.1.43 + clr4 protein, S pombe + + + 0 + Schizosaccharomyces pombe Proteins + + + IM + + + Humans + + + Schizosaccharomyces + genetics + metabolism + + + Histone-Lysine N-Methyltransferase + genetics + metabolism + + + Histones + metabolism + + + Histone Methyltransferases + metabolism + + + Chromatin + metabolism + + + Heterochromatin + metabolism + + + Cell Cycle Proteins + metabolism + + + Schizosaccharomyces pombe Proteins + genetics + metabolism + + + + Clr4 + SET domain + SUV39H + autoregulation + chromodomain + fission yeast + histone methylation + histone methyltransferases + ubiquitylation + + The authors declare no conflict of interest. +
+ + + + 2023 + 2 + 27 + + + 2023 + 3 + 22 + + + 2023 + 3 + 22 + + + 2023 + 5 + 17 + 6 + 42 + + + 2023 + 5 + 16 + 6 + 42 + + + 2023 + 5 + 16 + 1 + 8 + + + epublish + + 37189341 + PMC10135481 + 10.3390/biom13040593 + biom13040593 + + + + Strahl B.D., Allis C.D. The language of covalent histone modifications. Nature. 2000;403:41–45. doi: 10.1038/47412. + + 10.1038/47412 + 10638745 + + + + Murray K. The Occurrence of Epsilon-N-Methyl Lysine in Histones. Biochemistry. 1964;3:10–15. doi: 10.1021/bi00889a003. + + 10.1021/bi00889a003 + 14114491 + + + + Tschiersch B., Hofmann A., Krauss V., Dorn R., Korge G., Reuter G. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 1994;13:3822–3831. doi: 10.1002/j.1460-2075.1994.tb06693.x. + + 10.1002/j.1460-2075.1994.tb06693.x + PMC395295 + 7915232 + + + + Aagaard L., Laible G., Selenko P., Schmid M., Dorn R., Schotta G., Kuhfittig S., Wolf A., Lebersorger A., Singh P.B., et al. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J. 1999;18:1923–1938. doi: 10.1093/emboj/18.7.1923. + + 10.1093/emboj/18.7.1923 + PMC1171278 + 10202156 + + + + Eissenberg J.C., Morris G.D., Reuter G., Hartnett T. The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics. 1992;131:345–352. doi: 10.1093/genetics/131.2.345. + + 10.1093/genetics/131.2.345 + PMC1205009 + 1644277 + + + + Ekwall K., Ruusala T. Mutations in rik1, clr2, clr3 and clr4 genes asymmetrically derepress the silent mating-type loci in fission yeast. Genetics. 1994;136:53–64. doi: 10.1093/genetics/136.1.53. + + 10.1093/genetics/136.1.53 + PMC1205792 + 8138176 + + + + Allshire R.C., Nimmo E.R., Ekwall K., Javerzat J.P., Cranston G. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev. 1995;9:218–233. doi: 10.1101/gad.9.2.218. + + 10.1101/gad.9.2.218 + 7851795 + + + + Ivanova A.V., Bonaduce M.J., Ivanov S.V., Klar A.J. The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast. Nat. Genet. 1998;19:192–195. doi: 10.1038/566. + + 10.1038/566 + 9620780 + + + + Paro R., Hogness D.S. The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc. Natl. Acad. Sci. USA. 1991;88:263–267. doi: 10.1073/pnas.88.1.263. + + 10.1073/pnas.88.1.263 + PMC50790 + 1898775 + + + + Platero J.S., Hartnett T., Eissenberg J.C. Functional analysis of the chromo domain of HP1. EMBO J. 1995;14:3977–3986. doi: 10.1002/j.1460-2075.1995.tb00069.x. + + 10.1002/j.1460-2075.1995.tb00069.x + PMC394476 + 7664737 + + + + Rea S., Eisenhaber F., O’Carroll D., Strahl B.D., Sun Z.W., Schmid M., Opravil S., Mechtler K., Ponting C.P., Allis C.D., et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 2000;406:593–599. doi: 10.1038/35020506. + + 10.1038/35020506 + 10949293 + + + + Bannister A.J., Zegerman P., Partridge J.F., Miska E.A., Thomas J.O., Allshire R.C., Kouzarides T. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature. 2001;410:120–124. doi: 10.1038/35065138. + + 10.1038/35065138 + 11242054 + + + + Lachner M., O’Carroll D., Rea S., Mechtler K., Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 2001;410:116–120. doi: 10.1038/35065132. + + 10.1038/35065132 + 11242053 + + + + Nakayama J., Rice J.C., Strahl B.D., Allis C.D., Grewal S.I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science. 2001;292:110–113. doi: 10.1126/science.1060118. + + 10.1126/science.1060118 + 11283354 + + + + Sadaie M., Shinmyozu K., Nakayama J. A conserved SET domain methyltransferase, Set11, modifies ribosomal protein Rpl12 in fission yeast. J. Biol. Chem. 2008;283:7185–7195. doi: 10.1074/jbc.M709429200. + + 10.1074/jbc.M709429200 + 18195021 + + + + Shirai A., Sadaie M., Shinmyozu K., Nakayama J. Methylation of ribosomal protein L42 regulates ribosomal function and stress-adapted cell growth. J. Biol. Chem. 2010;285:22448–22460. doi: 10.1074/jbc.M110.132274. + + 10.1074/jbc.M110.132274 + PMC2903366 + 20444689 + + + + Velazquez Camacho O., Galan C., Swist-Rosowska K., Ching R., Gamalinda M., Karabiber F., De La Rosa-Velazquez I., Engist B., Koschorz B., Shukeir N., et al. Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation. Elife. 2017;6:e25293. doi: 10.7554/eLife.25293. + + 10.7554/eLife.25293 + PMC5538826 + 28760199 + + + + Tamaru H., Selker E.U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature. 2001;414:277–283. doi: 10.1038/35104508. + + 10.1038/35104508 + 11713521 + + + + Dumesic P.A., Homer C.M., Moresco J.J., Pack L.R., Shanle E.K., Coyle S.M., Strahl B.D., Fujimori D.G., Yates J.R., 3rd, Madhani H.D. Product binding enforces the genomic specificity of a yeast polycomb repressive complex. Cell. 2015;160:204–218. doi: 10.1016/j.cell.2014.11.039. + + 10.1016/j.cell.2014.11.039 + PMC4303595 + 25533783 + + + + Iglesias N., Currie M.A., Jih G., Paulo J.A., Siuti N., Kalocsay M., Gygi S.P., Moazed D. Automethylation-induced conformational switch in Clr4 (Suv39h) maintains epigenetic stability. Nature. 2018;560:504–508. doi: 10.1038/s41586-018-0398-2. + + 10.1038/s41586-018-0398-2 + PMC6287498 + 30051891 + + + + Gay N., Wu H., Min J., Lunin V.V., Antoshenko T., Dombrovski L., Zeng H., Allali-Hassani A., Campagna-Slater V., Vedadi M., et al. Structural Biology of Human H3K9 Methyltransferases. PLoS ONE. 2010;5:e8570. doi: 10.1371/journal.pone.0008570. + + 10.1371/journal.pone.0008570 + PMC2797608 + 20084102 + + + + Piao L., Nakakido M., Suzuki T., Dohmae N., Nakamura Y., Hamamoto R. Automethylation of SUV39H2, an oncogenic histone lysine methyltransferase, regulates its binding affinity to substrate proteins. Oncotarget. 2016;7:22846–22856. doi: 10.18632/oncotarget.8072. + + 10.18632/oncotarget.8072 + PMC5008405 + 26988914 + + + + Kuzdere T., Flury V., Schalch T., Iesmantavicius V., Hess D., Buhler M. Differential phosphorylation of Clr4(SUV39H) by Cdk1 accompanies a histone H3 methylation switch that is essential for gametogenesis. EMBO Rep. 2023;24:e55928. doi: 10.15252/embr.202255928. + + 10.15252/embr.202255928 + PMC9827552 + 36408846 + + + + Lee C.H., Yu J.R., Granat J., Saldana-Meyer R., Andrade J., LeRoy G., Jin Y., Lund P., Stafford J.M., Garcia B.A., et al. Automethylation of PRC2 promotes H3K27 methylation and is impaired in H3K27M pediatric glioma. Genes Dev. 2019;33:1428–1440. doi: 10.1101/gad.328773.119. + + 10.1101/gad.328773.119 + PMC6771381 + 31488577 + + + + Wang X., Long Y., Paucek R.D., Gooding A.R., Lee T., Burdorf R.M., Cech T.R. Regulation of histone methylation by automethylation of PRC2. Genes Dev. 2019;33:1416–1427. doi: 10.1101/gad.328849.119. + + 10.1101/gad.328849.119 + PMC6771386 + 31488576 + + + + Chin H.G., Esteve P.O., Pradhan M., Benner J., Patnaik D., Carey M.F., Pradhan S. Automethylation of G9a and its implication in wider substrate specificity and HP1 binding. Nucleic Acids Res. 2007;35:7313–7323. doi: 10.1093/nar/gkm726. + + 10.1093/nar/gkm726 + PMC2175347 + 17962312 + + + + Sampath S.C., Marazzi I., Yap K.L., Sampath S.C., Krutchinsky A.N., Mecklenbrauker I., Viale A., Rudensky E., Zhou M.M., Chait B.T., et al. Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol. Cell. 2007;27:596–608. doi: 10.1016/j.molcel.2007.06.026. + + 10.1016/j.molcel.2007.06.026 + 17707231 + + + + Al-Sady B., Madhani H.D., Narlikar G.J. Division of labor between the chromodomains of HP1 and Suv39 methylase enables coordination of heterochromatin spread. Mol. Cell. 2013;51:80–91. doi: 10.1016/j.molcel.2013.06.013. + + 10.1016/j.molcel.2013.06.013 + PMC3752401 + 23849629 + + + + Muller M.M., Fierz B., Bittova L., Liszczak G., Muir T.W. A two-state activation mechanism controls the histone methyltransferase Suv39h1. Nat. Chem. Biol. 2016;12:188–193. doi: 10.1038/nchembio.2008. + + 10.1038/nchembio.2008 + PMC4876634 + 26807716 + + + + Ishida M., Shimojo H., Hayashi A., Kawaguchi R., Ohtani Y., Uegaki K., Nishimura Y., Nakayama J. Intrinsic nucleic acid-binding activity of Chp1 chromodomain is required for heterochromatic gene silencing. Mol. Cell. 2012;47:228–241. doi: 10.1016/j.molcel.2012.05.017. + + 10.1016/j.molcel.2012.05.017 + 22727667 + + + + Lu J., Gilbert D.M. Proliferation-dependent and cell cycle regulated transcription of mouse pericentric heterochromatin. J. Cell Biol. 2007;179:411–421. doi: 10.1083/jcb.200706176. + + 10.1083/jcb.200706176 + PMC2064789 + 17984319 + + + + Shirai A., Kawaguchi T., Shimojo H., Muramatsu D., Ishida-Yonetani M., Nishimura Y., Kimura H., Nakayama J.I., Shinkai Y. Impact of nucleic acid and methylated H3K9 binding activities of Suv39h1 on its heterochromatin assembly. Elife. 2017;6:e25317. doi: 10.7554/eLife.25317. + + 10.7554/eLife.25317 + PMC5538823 + 28760201 + + + + Johnson W.L., Yewdell W.T., Bell J.C., McNulty S.M., Duda Z., O’Neill R.J., Sullivan B.A., Straight A.F. RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin. Elife. 2017;6:e25299. doi: 10.7554/eLife.25299. + + 10.7554/eLife.25299 + PMC5538822 + 28760200 + + + + Cifuentes-Rojas C., Hernandez A.J., Sarma K., Lee J.T. Regulatory interactions between RNA and polycomb repressive complex 2. Mol. Cell. 2014;55:171–185. doi: 10.1016/j.molcel.2014.05.009. + + 10.1016/j.molcel.2014.05.009 + PMC4107928 + 24882207 + + + + Kaneko S., Son J., Bonasio R., Shen S.S., Reinberg D. Nascent RNA interaction keeps PRC2 activity poised and in check. Genes Dev. 2014;28:1983–1988. doi: 10.1101/gad.247940.114. + + 10.1101/gad.247940.114 + PMC4173153 + 25170018 + + + + Wang X., Goodrich K.J., Gooding A.R., Naeem H., Archer S., Paucek R.D., Youmans D.T., Cech T.R., Davidovich C. Targeting of Polycomb Repressive Complex 2 to RNA by Short Repeats of Consecutive Guanines. Mol. Cell. 2017;65:1056–1067.e5. doi: 10.1016/j.molcel.2017.02.003. + + 10.1016/j.molcel.2017.02.003 + 28306504 + + + + Horn P.J., Bastie J.N., Peterson C.L. A Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation. Genes Dev. 2005;19:1705–1714. doi: 10.1101/gad.1328005. + + 10.1101/gad.1328005 + PMC1176008 + 16024659 + + + + Hong E.J., Villen J., Gerace E.L., Gygi S.P., Moazed D. A cullin E3 ubiquitin ligase complex associates with Rik1 and the Clr4 histone H3-K9 methyltransferase and is required for RNAi-mediated heterochromatin formation. RNA Biol. 2005;2:106–111. doi: 10.4161/rna.2.3.2131. + + 10.4161/rna.2.3.2131 + 17114925 + + + + Jia S., Kobayashi R., Grewal S.I. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nat. Cell Biol. 2005;7:1007–1013. doi: 10.1038/ncb1300. + + 10.1038/ncb1300 + 16127433 + + + + Li F., Goto D.B., Zaratiegui M., Tang X., Martienssen R., Cande W.Z. Two novel proteins, dos1 and dos2, interact with rik1 to regulate heterochromatic RNA interference and histone modification. Curr. Biol. 2005;15:1448–1457. doi: 10.1016/j.cub.2005.07.021. + + 10.1016/j.cub.2005.07.021 + 16040243 + + + + Thon G., Hansen K.R., Altes S.P., Sidhu D., Singh G., Verhein-Hansen J., Bonaduce M.J., Klar A.J. The Clr7 and Clr8 directionality factors and the Pcu4 cullin mediate heterochromatin formation in the fission yeast Schizosaccharomyces pombe. Genetics. 2005;171:1583–1595. doi: 10.1534/genetics.105.048298. + + 10.1534/genetics.105.048298 + PMC1456086 + 16157682 + + + + Buscaino A., White S.A., Houston D.R., Lejeune E., Simmer F., de Lima Alves F., Diyora P.T., Urano T., Bayne E.H., Rappsilber J., et al. Raf1 Is a DCAF for the Rik1 DDB1-like protein and has separable roles in siRNA generation and chromatin modification. PLoS Genet. 2012;8:e1002499. doi: 10.1371/journal.pgen.1002499. + + 10.1371/journal.pgen.1002499 + PMC3271066 + 22319459 + + + + Kuscu C., Zaratiegui M., Kim H.S., Wah D.A., Martienssen R.A., Schalch T., Joshua-Tor L. CRL4-like Clr4 complex in Schizosaccharomyces pombe depends on an exposed surface of Dos1 for heterochromatin silencing. Proc. Natl. Acad. Sci. USA. 2014;111:1795–1800. doi: 10.1073/pnas.1313096111. + + 10.1073/pnas.1313096111 + PMC3918804 + 24449894 + + + + White S.A., Buscaino A., Sanchez-Pulido L., Ponting C.P., Nowicki M.W., Allshire R.C. The RFTS Domain of Raf2 Is Required for Cul4 Interaction and Heterochromatin Integrity in Fission Yeast. PLoS ONE. 2014;9:e104161. doi: 10.1371/journal.pone.0104161. + + 10.1371/journal.pone.0104161 + PMC4121317 + 25090107 + + + + Oya E., Nakagawa R., Yoshimura Y., Tanaka M., Nishibuchi G., Machida S., Shirai A., Ekwall K., Kurumizaka H., Tagami H., et al. H3K14 ubiquitylation promotes H3K9 methylation for heterochromatin assembly. EMBO Rep. 2019;20:e48111. doi: 10.15252/embr.201948111. + + 10.15252/embr.201948111 + PMC6776926 + 31468675 + + + + Stirpe A., Guidotti N., Northall S.J., Kilic S., Hainard A., Vadas O., Fierz B., Schalch T. SUV39 SET domains mediate crosstalk of heterochromatic histone marks. Elife. 2021;10:e62682. doi: 10.7554/eLife.62682. + + 10.7554/eLife.62682 + PMC8443253 + 34524082 + + + + Wiren M., Silverstein R.A., Sinha I., Walfridsson J., Lee H.M., Laurenson P., Pillus L., Robyr D., Grunstein M., Ekwall K. Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast. EMBO J. 2005;24:2906–2918. doi: 10.1038/sj.emboj.7600758. + + 10.1038/sj.emboj.7600758 + PMC1187943 + 16079916 + + + + Bjerling P., Silverstein R.A., Thon G., Caudy A., Grewal S., Ekwall K. Functional divergence between histone deacetylases in fission yeast by distinct cellular localization and in vivo specificity. Mol. Cell Biol. 2002;22:2170–2181. doi: 10.1128/MCB.22.7.2170-2181.2002. + + 10.1128/MCB.22.7.2170-2181.2002 + PMC133699 + 11884604 + + + + Lewis Z.A., Adhvaryu K.K., Honda S., Shiver A.L., Knip M., Sack R., Selker E.U. DNA methylation and normal chromosome behavior in Neurospora depend on five components of a histone methyltransferase complex, DCDC. PLoS Genet. 2010;6:e1001196. doi: 10.1371/journal.pgen.1001196. + + 10.1371/journal.pgen.1001196 + PMC2973830 + 21079689 + + + + Yang Y., Liu R., Qiu R., Zheng Y., Huang W., Hu H., Ji Q., He H., Shang Y., Gong Y., et al. CRL4B promotes tumorigenesis by coordinating with SUV39H1/HP1/DNMT3A in DNA methylation-based epigenetic silencing. Oncogene. 2015;34:104–118. doi: 10.1038/onc.2013.522. + + 10.1038/onc.2013.522 + 24292684 + + + + Higa L.A., Wu M., Ye T., Kobayashi R., Sun H., Zhang H. CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat. Cell Biol. 2006;8:1277–1283. doi: 10.1038/ncb1490. + + 10.1038/ncb1490 + 17041588 + + + + Wang H., Zhai L., Xu J., Joo H.Y., Jackson S., Erdjument-Bromage H., Tempst P., Xiong Y., Zhang Y. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol. Cell. 2006;22:383–394. doi: 10.1016/j.molcel.2006.03.035. + + 10.1016/j.molcel.2006.03.035 + 16678110 + + + + Kim W., Bennett E.J., Huttlin E.L., Guo A., Li J., Possemato A., Sowa M.E., Rad R., Rush J., Comb M.J., et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell. 2011;44:325–340. doi: 10.1016/j.molcel.2011.08.025. + + 10.1016/j.molcel.2011.08.025 + PMC3200427 + 21906983 + + + + Chandrasekharan M.B., Huang F., Sun Z.W. Histone H2B ubiquitination and beyond: Regulation of nucleosome stability, chromatin dynamics and the trans-histone H3 methylation. Epigenetics. 2010;5:460–468. doi: 10.4161/epi.5.6.12314. + + 10.4161/epi.5.6.12314 + PMC3230548 + 20523115 + + + + Kim J., Kim J.A., McGinty R.K., Nguyen U.T., Muir T.W., Allis C.D., Roeder R.G. The n-SET domain of Set1 regulates H2B ubiquitylation-dependent H3K4 methylation. Mol. Cell. 2013;49:1121–1133. doi: 10.1016/j.molcel.2013.01.034. + + 10.1016/j.molcel.2013.01.034 + PMC3615140 + 23453808 + + + + Sun Z.W., Allis C.D. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature. 2002;418:104–108. doi: 10.1038/nature00883. + + 10.1038/nature00883 + 12077605 + + + + Dover J., Schneider J., Tawiah-Boateng M.A., Wood A., Dean K., Johnston M., Shilatifard A. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J. Biol. Chem. 2002;277:28368–28371. doi: 10.1074/jbc.C200348200. + + 10.1074/jbc.C200348200 + 12070136 + + + + Kalb R., Latwiel S., Baymaz H.I., Jansen P.W., Muller C.W., Vermeulen M., Muller J. Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat. Struct. Mol. Biol. 2014;21:569–571. doi: 10.1038/nsmb.2833. + + 10.1038/nsmb.2833 + 24837194 + + + + Nishiyama A., Yamaguchi L., Sharif J., Johmura Y., Kawamura T., Nakanishi K., Shimamura S., Arita K., Kodama T., Ishikawa F., et al. Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature. 2013;502:249–253. doi: 10.1038/nature12488. + + 10.1038/nature12488 + 24013172 + + + + Ishiyama S., Nishiyama A., Saeki Y., Moritsugu K., Morimoto D., Yamaguchi L., Arai N., Matsumura R., Kawakami T., Mishima Y., et al. Structure of the Dnmt1 Reader Module Complexed with a Unique Two-Mono-Ubiquitin Mark on Histone H3 Reveals the Basis for DNA Methylation Maintenance. Mol. Cell. 2017;68:350–360.e7. doi: 10.1016/j.molcel.2017.09.037. + + 10.1016/j.molcel.2017.09.037 + 29053958 + + + + +
+
diff --git a/t/pubmed_xml.t b/t/pubmed_xml.t new file mode 100644 index 00000000..ac711b9d --- /dev/null +++ b/t/pubmed_xml.t @@ -0,0 +1,37 @@ +use strict; +use warnings; +use Test::More tests => 2; + +use Storable qw(thaw); + +BEGIN { + unshift @INC, 't', 'lib'; +} + +use GDBM_File; +use PomBase::TestUtil; +use PomBase::Chado::PubmedUtil; + +my $test_util = PomBase::TestUtil->new(); +my $config = $test_util->config(); + +local $/ = undef; + +open my $f, '<', 'data/pubmed_37189341.xml' or die; + +my $xml = <$f>; + +unlink '/tmp/pubmed_cache.gdbm'; + +tie my %pubmed_cache, 'GDBM_File', '/tmp/pubmed_cache.gdbm', &GDBM_WRCREAT, 0640; + +my $pubmed_util = PomBase::Chado::PubmedUtil->new(chado => $test_util->chado(), + config => $config, + pubmed_cache => \%pubmed_cache); +$pubmed_util->parse_pubmed_xml($xml); + +ok(exists $pubmed_cache{'PMID:37189341'}); + +my $pub_details = thaw($pubmed_cache{'PMID:37189341'}); + +is($pub_details->{publication_date}, '25 Mar 2023');