-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural_net.py
375 lines (327 loc) · 14.4 KB
/
neural_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import numpy as np
class NeuralNet(object):
BATCH_LEARNING = 'batch'
MINI_BATCH_LEARNING = 'mini_batch'
STOCHASTIC_LEARNING = 'stochastic'
def __init__(
self, train_inputs, train_outputs, hidden_layers, validation_inputs,
validation_outputs, eta=0.7, momentum=0.9, early_stopping=True,
method=BATCH_LEARNING, mini_batch_size=None, outtype='softmax',
cost_func='log', optimizer='adam', regularization=True,
regularization_param=1.0, lr_decay=0.0, lr_decay_type='inv',
beta1=0.9, beta2=0.999, eps=1e-8):
"""NeuralNet class is used to create neural network classifier.
Args:
train_inputs: numpy array. This is array containing inputs to the
neural network of size (n_samples, n_features).
train_outputs: numpy array. This is array containg expected outputs
of neural network of size (n_samples, n_classes). In case of
regression problem n_class is 1. In classification problem
n_class is total number of classes.
hidden_layers: list. This list contains number of neurons in hidden
layer. These are between input layer and output layer. For e.g. if
this list is [20, 30] then architecture of entire network is
n_features -> 20 -> 30 -> n_classes.
validation_inputs: numpy array. This array consists of validation
inputs of size (n_validation, n_features). n_validation is size
of number validaion cases.
validation_outputs: numpy array. This array consists of validation
outputs of size (n_validation, n_classes).
eta: float. This value is learning rate parameter of network.
momentum: float. Momentum rate of network.
early_stopping: boolean. If enabled, network uses validation set to determine
when to stop learning.
method: str. This specified learning method used by network. It can
be 'batch', 'stochastic' or 'mini_batch' learning method.
'batch' referes to batch learning of gradient decent.
'stochastic' referes to stochastic gradient decent (SGD).
'mini_batch' is variation of SGD and is in middle of batch
gradient decent and purely SGD.
mini_batch_size: int. This must be specified when using 'mini_batch'
learning method.
outtype: str. This specifies what function to use in activation of
output neurons. As of now it support 'sigmoid' only.
cost_func: str. This tells which cost function to use. Possibel
choices are 'mse' (Mean Squared Error) and 'log' (or Cross
Entropy) error function.
optimizer: str. What type of optimizer to use. Currently supports
'momentum', 'nag', 'adam', 'adagrad', 'rmsprop'.
regularization: bool. This specified whether to use regularization
or not. L2 regularization is used if this is True.
regularization_param: float. This is regularization parameter used
for penalty calculation and weights update.
lr_decay: float. Hyperparameter used for annealing learning rate.
lr_decay_type: str. Method used for learning rate decay. Possible
types are 'inv' and 'exp'.
beta1: float. Adam optimizer hyper parameter.
beta2: float. Adam optimizer hyper parameter.
eps: float. Small constant to avoid division by zero in
Adam, Adagrad and RMSprop optimizer.
"""
# Prepare train_data.
self.inputs = np.array(train_inputs)
self.outputs = np.array(train_outputs)
self.test_cases = self.inputs.shape[0]
self.input_neurons = np.array([len(self.inputs[0])])
self.output_neurons = np.array([len(self.outputs[0])])
self.hidden_layers = np.array(hidden_layers)
self.eta = eta
self.momentum = momentum
self.early_stopping = early_stopping
self.outtype = outtype
self.cost_func = cost_func
self.optimizer = optimizer
self.regularization = regularization
self.regularization_param = regularization_param
self.learning_method = method
self.lr_decay = lr_decay
self.lr_decay_type = lr_decay_type
self.beta1 = beta1
self.beta2 = beta2
self.eps = eps
self.init_eta = eta
# Prepare validation data for early stopping.
if early_stopping:
self.validation_inputs = np.array(validation_inputs)
self.validation_outputs = np.array(validation_outputs)
if (self.learning_method == self.MINI_BATCH_LEARNING and
mini_batch_size == None):
raise Exception(
"Please enter mini_batch_size if using "
"MINI_BATCH_LEARNING method")
self.mini_batch_size = mini_batch_size
# Initialize all required variables.
self.neural_layers = np.concatenate(
[self.input_neurons, self.hidden_layers, self.output_neurons])
self.num_layers = self.neural_layers.shape[0]
self.theta = [np.random.randn(self.neural_layers[i+1], self.neural_layers[i]+1) / np.sqrt(2.0 / self.neural_layers[i]+1)
for i in np.arange(self.num_layers-1)]
self.old_updates = [np.zeros((self.neural_layers[i+1], self.neural_layers[i]+1))
for i in np.arange(self.num_layers-1)]
self.cache = [np.zeros((self.neural_layers[i+1], self.neural_layers[i]+1))
for i in np.arange(self.num_layers-1)]
if self.learning_method == self.BATCH_LEARNING:
self.inputs_per_batch = self.test_cases
elif self.learning_method == self.MINI_BATCH_LEARNING:
self.inputs_per_batch = self.mini_batch_size
elif self.learning_method == self.STOCHASTIC_LEARNING:
self.inputs_per_batch = 1
self.activation = [np.random.rand(self.inputs_per_batch, self.neural_layers[i])
for i in range(self.num_layers)]
self.sig_activation = [np.random.rand(self.inputs_per_batch, self.neural_layers[i])
for i in range(self.num_layers)]
self.delta = [np.random.rand(self.inputs_per_batch, self.neural_layers[i])
for i in range(self.num_layers)]
def sigmoid(self, z):
return (1/(1+np.exp(-z)))
def sigmoid_grad(self, z):
sigm = self.sigmoid(z)
return sigm*(1-sigm)
def softmax(self, z):
if z.shape[0] > 1:
return np.exp(z) / np.sum(np.exp(z), axis=1).reshape(z.shape[0], 1)
else:
return np.exp(z) / np.sum(np.exp(z))
def softmax_delta(self, target, z):
delk = np.zeros(z.shape)
delta = np.zeros(z.shape)
for i in range(delta.shape[1]):
delk[:, i] = 1
delta[:, i] = np.sum((z - target) * z * (delk - z[:, i].reshape(z.shape[0],1)), axis=1)
delk[:, i] = 0
return delta
def calculate_regularization_penalty(self):
penalty = 0
for t in self.theta:
penalty += (self.regularization_param * np.sum(t[:, 1:]**2) / (2 * self.inputs_per_batch))
return penalty
def calculate_error(self, target, output):
reg_penalty = 0
cost = 0
if self.regularization == True:
reg_penalty = self.calculate_regularization_penalty()
if self.cost_func == 'log':
cost = np.sum(-(target * np.log(output) + (1 - target) * np.log(1 - output))) / target.shape[0]
elif self.cost_func == 'mse':
cost = np.sum((output - target) ** 2)/(2 * output.shape[0])
else:
raise Exception("Unknown cost function supplied. Please set it to "
"mse or log.")
return cost + reg_penalty
def calculate_output(self, outputs):
if self.outtype == 'sigmoid':
return self.sigmoid(outputs)
elif self.outtype == 'softmax':
return self.softmax(outputs)
else:
raise Exception("Unknow output activation function.")
def calculate_output_delta(self, target, outputs):
if self.cost_func == 'log':
return (outputs - target)
elif self.cost_func == 'mse':
if self.outtype == 'sigmoid':
return (outputs - target) * outputs * (1 - outputs)
elif self.outtype == 'softmax':
return self.softmax_delta(target, outputs)
else:
raise Exception("Unknown output activation function.")
def _shuffle(self):
order = range(self.inputs.shape[0])
np.random.shuffle(order)
self.inputs = self.inputs[order, :]
self.outputs = self.outputs[order, :]
def _decay_lr(self):
if self.lr_decay_type == 'inv':
self.eta = self.init_eta * (1. / (1 + self.global_step * self.lr_decay))
elif self.lr_decay_type == 'exp':
self.eta = self.init_eta * np.exp(-1 * self.lr_decay * self.global_step)
else:
raise Exception('Unknown method for learning rate decay.')
def _forward_prop(self, inputs):
for i in range(self.num_layers - 1):
self.sig_activation[i] = (
inputs if i==0 else self.sigmoid(self.activation[i]))
layer_input = np.concatenate(
[np.ones((self.inputs_per_batch,1)), self.sig_activation[i]], axis=1)
self.activation[i+1] = np.dot(layer_input, self.theta[i].T)
self.sig_activation[-1] = self.calculate_output(self.activation[-1])
def _back_prop(self, outputs):
self.delta[-1] = self.calculate_output_delta(outputs, self.sig_activation[-1])
for i in range(self.num_layers-1, 1, -1):
self.delta[i-1] = (
np.dot(self.delta[i], self.theta[i-1])[:, 1:]) * self.sig_activation[i-1] * (1 - self.sig_activation[i-1])
def _update_theta(self):
for i in range(self.num_layers-1, 0, -1):
grad = np.dot(
self.delta[i].T, np.concatenate(
[np.ones((self.inputs_per_batch,1)), self.sig_activation[i-1]], axis=1))
grad = grad / self.inputs_per_batch
if self.regularization:
t = np.zeros(self.theta[i-1].shape)
t[:, 1:] = self.theta[i-1][:, 1:]
grad += (self.regularization_param * t / self.inputs_per_batch)
grad = self.optimize(i, grad)
self.theta[i-1] += grad
def optimize(self, layer, grad):
if self.optimizer == 'vanilla':
return -1 * (self.eta * grad)
elif self.optimizer == 'momentum':
return self.momentum_optimizer(layer, grad)
elif self.optimizer == 'nag':
return self.nag_optimizer(layer, grad)
elif self.optimizer == 'adam':
return self.adam_optimizer(layer, grad)
elif self.optimizer == 'adagrad':
return self.adagrad_optimizer(layer, grad)
elif self.optimizer == 'rmsprop':
return self.rmsprop_optimizer(layer, grad)
else:
raise Exception('Unknown optimizer.')
def momentum_optimizer(self, layer, grad):
new_grad = self.momentum * self.old_updates[layer - 1] - self.eta * grad
self.old_updates[layer - 1] = new_grad
return new_grad
def nag_optimizer(self, layer, grad):
new_grad = self.momentum_optimizer(layer, grad)
return self.momentum * new_grad - self.eta * grad
def adagrad_optimizer(self, layer, grad):
self.cache[layer - 1] += (grad**2)
return -1 * (self.eta * grad) / (np.sqrt(self.cache[layer - 1]) + self.eps)
def rmsprop_optimizer(self, layer, grad):
self.cache[layer - 1] = self.beta1 * self.cache[layer - 1] + (1 - self.beta1) * (grad**2)
return -1 * (self.eta * grad) / (np.sqrt(self.cache[layer - 1]) + self.eps)
def adam_optimizer(self, layer, grad):
self.old_updates[layer - 1] = self.beta1 * self.old_updates[layer - 1] + (1 - self.beta1) * grad
self.cache[layer - 1] = self.beta2 * self.cache[layer - 1] + (1 - self.beta2) * (grad**2)
bias_correction_grad = (1.0 / (1 - self.beta1 ** self.global_step))
bias_correction_cache = (1.0 / (1 - self.beta2 ** self.global_step))
return -1 * (self.eta * self.old_updates[layer - 1] * bias_correction_grad) / (np.sqrt(self.cache[layer - 1] * bias_correction_cache) + self.eps)
def _perform_single_iter(self, inputs, outputs):
self._forward_prop(inputs)
self._back_prop(outputs)
self._update_theta()
def _perform_single_batch_iteration(self):
self._shuffle()
self._perform_single_iter(self.inputs, self.outputs)
error = self.calculate_error(self.outputs, self.sig_activation[-1])
return error
def _perform_single_mini_batch_iteration(self):
self._shuffle()
error = 0
mini_batch_count = 0
for i in range(0, self.test_cases, self.mini_batch_size):
batch_input = self.inputs[i:i+self.mini_batch_size, :]
batch_output = self.outputs[i:i+self.mini_batch_size, :]
# Check if remaining number inputs is less than batch size.
if batch_input.shape[0] < self.mini_batch_size:
break
self._perform_single_iter(batch_input, batch_output)
error += self.calculate_error(batch_output, self.sig_activation[-1])
mini_batch_count += 1
return error / mini_batch_count
def _perform_stochastic_iteration(self):
error = 0
self._shuffle()
for i in range(self.test_cases):
ins = self.inputs[i].reshape(1, self.inputs.shape[1])
outs = self.outputs[i].reshape(1, self.outputs.shape[1])
self._perform_single_iter(ins, outs)
error += self.calculate_error(outs, self.sig_activation[-1])
return error / self.test_cases
def _perform_single_learning_iter(self):
if self.learning_method == self.BATCH_LEARNING:
return self._perform_single_batch_iteration()
elif self.learning_method == self.MINI_BATCH_LEARNING:
return self._perform_single_mini_batch_iteration()
elif self.learning_method == self.STOCHASTIC_LEARNING:
return self._perform_stochastic_iteration()
else:
raise Exception("Unknown learning method. Please set learning "
"to batch, mini_batch ot stochastic.")
def get_outputs(self, inputs):
for i in range(self.num_layers - 1):
inputs = inputs if i==0 else self.sigmoid(activations)
inputs = np.concatenate(
[np.ones((inputs.shape[0],1)), inputs], axis=1)
activations = np.dot(inputs, self.theta[i].T)
return self.calculate_output(activations)
def get_predicted_classes(self, inputs):
outputs = self.get_outputs(inputs)
return outputs.argmax(axis=1)
def calculate_accuracy(self, inputs, target):
return np.sum(self.get_predicted_classes(inputs) == target) / float(inputs.shape[0]) * 100.0
def _calculate_accuracy(self, output, target):
return np.sum(output.argmax(axis=1) == target.argmax(axis=1)) / 100.0
def train(self, max_epoch=None, report_back_at=100, show_validation_error=True):
old_validation_error1 = 10003
old_validation_error2 = 10002
validation_error = 10001
error = 1000
self.global_step = 1
if max_epoch:
while max_epoch >= self.global_step:
self.global_step += 1
error = self._perform_single_learning_iter()
self._decay_lr()
if (self.global_step % report_back_at) == 0:
print "E(train, %d epoch) = %f" % (self.global_step, error)
if show_validation_error:
validation_test = self.get_outputs(self.validation_inputs)
validation_error = self.calculate_error(
self.validation_outputs, validation_test)
print "E(validation) = %f" % validation_error
elif self.early_stopping:
while ((old_validation_error2 - old_validation_error1) > 0.0001 or
(old_validation_error1 - validation_error) > 0.0001):
self.global_step += 1
error = self._perform_single_learning_iter()
self._decay_lr()
old_validation_error2 = old_validation_error1
old_validation_error1 = validation_error
validation_test = self.get_outputs(self.validation_inputs)
validation_error = self.calculate_error(
self.validation_outputs, validation_test)
print "E(validation) = %f, E(train) = %f" % (validation_error, error)
else:
print ("Unknown learning stopping method. Please set early_stopping "
"to True, or provide epoch count while train()")