-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrender_scene.py
239 lines (198 loc) · 9.88 KB
/
render_scene.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# pylint: disable=unsubscriptable-object
import os
import json
import cv2
import numpy as np
import config
import argparse
import uuid
import pdb
import shutil
from pathlib import Path
from imgproc import depth_colormap, draw_bbox_with_label, draw_front_up_axes
from collections import defaultdict, OrderedDict
from PIL import Image
from renderer import blender, plain
import csv_parse, transforms
import pickle as pkl
def visualize(color, camera, normal, depth, obj1mask, obj2mask, wallmask, obj1bbox, obj2bbox, label1, label2, ddata_objectinfo, rdata_objectinfo, **_kwargs):
'''Generate an image of b x h x 4w x 3 that visualizes color, normal, depth, bboxes and object masks with annotated labels.'''
COLOR1 = (64, 255, 64)
COLOR2 = (64, 64, 255)
batch_size, height, width = color.shape[:3]
visualization = np.zeros((batch_size, height, 4 * width, 3), dtype=np.uint8)
for idx in range(batch_size):
color_idx = color[idx]
color_idx = draw_bbox_with_label(color_idx, obj1bbox[idx], label1, COLOR1)
color_idx = draw_bbox_with_label(color_idx, obj2bbox[idx], label2, COLOR2)
visualization[idx, :height, :width] = color_idx
nx, nz, ny = normal[idx, ..., 0], -normal[idx, ..., 1], -normal[idx, ..., 2]
nxyz = np.stack([nx, ny, nz], axis=2).astype(np.float32)
transform_vector = transforms.get_transform_vector(camera[idx], ddata_objectinfo, rdata_objectinfo)
visualization[idx, :, width:2*width] = draw_front_up_axes((nxyz + 1) / 2 * 255, camera[idx], transform_vector)
rows, cols = np.nonzero(obj1mask[idx][..., 0])
visualization[idx, rows, 2*width+cols , :] = COLOR1
rows, cols = np.nonzero(obj2mask[idx][..., 0])
visualization[idx, rows, 2*width+cols , :] = COLOR2
mask = (obj1mask[idx] | obj2mask[idx] | wallmask[idx])[..., 0]
visualization[idx, :, 3*width:] = (depth_colormap(depth[idx][..., 0], mask=mask))
return visualization
def render_scene(description_data, result_data, height, width, cache_dir, use_gpu, sample_count, denoising, output_type=None, debug=False,
cidx=None, states=None):
'''Given a single row of data (description, result), generate and refine a list of cameras, and the use the cameras
to call the blender.render to get the images.'''
from camera_gen import gen_initial_camera, refine_camera
init_cameras = gen_initial_camera(description_data, result_data)
if not cidx is None:
init_cameras = [init_cameras[cidx]]
valid_states = csv_parse.valid_state_from_result(result_data)
if states is None:
result_data_clean = {key: result_data[key] for key in valid_states}
else:
# states should be a subset of valid_states
for state in states:
assert state in valid_states
result_data_clean = {key: result_data[key] for key in states}
def f_get_info(cameras):
'''The function called inside `refine_camera` to obtain the information (such as mask, bounding boxes) of the both objects
'''
# data = blender.render(description_data, cameras, result_data_clean, height, width, cache_dir, use_gpu, sample_count, denoising, output_type='groundtruth', debug=debug)
data = plain.render_bbox(description_data, cameras, result_data_clean, height, width)
return (height, width), data
camera_data = refine_camera(init_cameras, description_data, result_data_clean, f_get_info)
return blender.render(description_data, camera_data, result_data_clean, height, width, cache_dir, use_gpu, sample_count, denoising, output_type, debug)
def get_uid_data(task_csv):
'''A dictionary that maps an uid to the description and result data
'''
uid_data_path = f'./data/uid_data.pkl'
if os.path.exists(uid_data_path):
with open(uid_data_path, 'rb') as file:
uid_data = pkl.load(file)
else:
uid_data = {}
tasks = csv_parse.all_valid_tasks_multiple(task_csv)
for task in tasks:
descpt_data, result_data = csv_parse.load_row(task)
valid_states = csv_parse.valid_state_from_result(result_data)
uids = [csv_parse.uid_from_description(descpt_data, state_name) for state_name in valid_states]
for uid in uids:
uid_data[uid] = (descpt_data, result_data)
with open(uid_data_path, 'wb') as file:
pkl.dump(uid_data, file)
return uid_data
def get_uid_cidx(img_name):
"""
:param img_name: format output_path / f'{uid} cam{cidx} rgb.png'
"""
img_name = img_name.split("/")[-1]
assert img_name[-8:] == " rgb.png"
img_name = img_name[:-8]
import re
m = re.search(r'\d+$', img_name)
assert not m is None
cidx = int(m.group())
img_name = img_name[:-len(str(cidx))]
assert img_name[-4:] == " cam"
uid = img_name[0:-4]
return uid, cidx
def get_state(uid):
"""
:param uid: ' - '.join([relation, obj1_uid, obj2_uid, state_name])
"""
state = uid.split(' - ')[-1]
return state
def render_scene_one(task_csv, output_folder, img_name, height, width, cache_dir,use_gpu, sample_count, denoising, skip, debug=False):
'''Returns data for a particular scene and camera which is parsed from the img_name
'''
def save_rgb_depth(render_result, rgb_fname, depth_fname):
"""
Save depth and rgb images
"""
cv2.imwrite(str(rgb_fname), cv2.cvtColor(render_result['color'], cv2.COLOR_RGB2BGR))
depth = render_result['depth']
depth = (depth - depth.min()) / (depth.max() - depth.min())
depth_image = Image.fromarray(np.squeeze(depth))
depth_image.save(depth_fname)
def cleanup_result(render_result, state):
render_result = render_result[state]
for x in render_result:
if not isinstance(render_result[x], int):
render_result[x] = render_result[x][0]
return render_result
uid, cidx = get_uid_cidx(img_name)
state = get_state(uid)
rgb_fname = output_folder / f'{uid} cam{cidx} rgb.png'
depth_fname = output_folder / f'{uid} cam{cidx} depth.tiff'
output_fname = output_folder / f'{uid} cam{cidx}.pkl'
skip_renderer = False
if output_fname.exists() and skip:
try:
with open(output_fname, 'rb') as file:
pkl.load(file)
except (pickle.UnpicklingError, ImportError, EOFError) as e:
print(f'Corrupted file: {output_fname}')
print(e)
else:
print(f'Skipping file: {output_fname}')
skip_renderer = True
if not skip_renderer:
uid_data = get_uid_data(task_csv)
descpt_data, result_data = uid_data[uid]
render_result = render_scene(descpt_data, result_data, height, width, cache_dir, use_gpu, sample_count, denoising,
output_type='all', debug=debug, cidx=cidx, states=[state])
render_result = cleanup_result(render_result, state)
save_rgb_depth(render_result, rgb_fname, depth_fname)
with open(output_fname, 'wb') as file:
pkl.dump(render_result, file)
def render_scene_all(task_csv, output_folder, json_data, start, end, array_index, array_total, height, width, use_gpu, sample_count, denoising, skip, debug=False):
'''Batch render scenes. Need to render the examples from index `start` to index `end`.
But the job is submitted in batch, so as the number `array_index` job of the whole `array_total` jobs,
it only needs to render a subset of [start, end). This subset range is computed through the `chunk` function.
'''
with open(json_data) as file:
data = json.load(file)
data = data['train'] + data['test']
max_idx = len(data)
def chunk(task_id, task_total, start, end):
'''Chunk samples for tasks.'''
total = end - start
start_idx = int(task_id / task_total * total) + start
end_idx = int((task_id + 1) / task_total * total) + start
return start_idx, end_idx
if start is None: start = 0
if end is None: end = max_idx
start_idx, end_idx = chunk(array_index, array_total, start, end)
print(f'[{start_idx}, {end_idx}) <- [{start}, {end})')
assert start <= start_idx < end
assert start < end_idx <= end
# Temporary directory to store the intermediate stuff
if not debug:
cache_dir = Path(config.TMP_DIR) / uuid.uuid4().hex
else: # Debugging mode, use tmp under the workdir
cache_dir = Path(__file__).parent.resolve() / 'tmp_cache'
cache_dir.mkdir(parents=True, exist_ok=True)
output_folder.mkdir(parents=True, exist_ok=True)
for idx in range(start_idx, end_idx):
sample = data[idx]
img_name = sample['rgb']
render_scene_one(task_csv, output_folder, img_name, height, width, cache_dir, use_gpu, sample_count, denoising, skip, debug)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--height', default=720, type=int)
parser.add_argument('--width', default=1280, type=int)
parser.add_argument('--task-csv', default=config.TASK_CSV)
parser.add_argument('--json-data', default=config.JSON_DATA)
parser.add_argument('--output-folder', type=Path, required=True)
subparsers = parser.add_subparsers()
render_parser = subparsers.add_parser('render') # Render the images
render_parser.add_argument('--use-gpu', default='auto')
render_parser.add_argument('--sample-count', default=512)
render_parser.add_argument('--denoising', action='store_true', default=False)
render_parser.add_argument('--debug', action='store_true', default=False)
render_parser.add_argument('--array-index', type=int, default=0)
render_parser.add_argument('--array-total', type=int, default=1)
render_parser.add_argument('--start', type=int)
render_parser.add_argument('--end', type=int)
render_parser.add_argument('--skip', action='store_true', default=False)
args = parser.parse_args()
render_scene_all(**vars(args))