-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmetrics.py
68 lines (57 loc) · 2.03 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import editdistance
import numpy as np
def word_error_rate(predicted_outputs, ground_truths):
""" Estimate Word_error_rate.
Args:
predicted_outputs(list) : result of model prediction
ground_truths(list) : ground truth
Returns:
World Error rate(float) : Word error rate Estimated by Edit distance.
"""
sum_wer=0.0
for output,ground_truth in zip(predicted_outputs,ground_truths):
output=output.split(" ")
ground_truth=ground_truth.split(" ")
distance = editdistance.eval(output, ground_truth)
length = max(len(output),len(ground_truth))
sum_wer+=(distance/length)
return sum_wer/len(predicted_outputs)
def sentence_acc(predicted_outputs, ground_truths):
""" Estimate sentence_acc.
Args:
predicted_outputs(list) : result of model prediction
ground_truths(list) : ground truth
Returns:
sentence_acc(float) : Acurracy between preicted_output and ground_truths
"""
correct_sentences=0
for output,ground_truth in zip(predicted_outputs,ground_truths):
if np.array_equal(output,ground_truth):
correct_sentences+=1
return correct_sentences/len(predicted_outputs)
def get_worst_wer_img_path(img_path_list, predicted_outputs, ground_truths):
""" Return Information of max word error rate Image
Args:
img_path_list(list) : list of image path
predicted_outputs(list) : result of model prediction
ground_truths(list) : ground truth
Returns:
image path(str) : Image path of worst error rate
word error rate(float) : max word error rate
ground truth(str) : Ground truth of max word error rate image
predicted_output(str) : Prediction of model
"""
max_wer_ind = 0
max_wer = 0
i = 0
for output, ground_truth in zip(predicted_outputs,ground_truths):
output=output.split(" ")
ground_truth=ground_truth.split(" ")
distance = editdistance.eval(output, ground_truth)
length = max(len(output), len(ground_truth))
cur_wer = (distance / length)
if max_wer < cur_wer:
max_wer = cur_wer
max_wer_ind = i
i+=1
return img_path_list[max_wer_ind], max_wer, ground_truths[max_wer_ind], predicted_outputs[max_wer_ind]