-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathdemo.py
111 lines (101 loc) · 4.91 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import librosa
import numpy as np
import argparse
from scipy.signal import savgol_filter
import torch
from model import EmoTalk
import random
import os, subprocess
import shlex
@torch.no_grad()
def test(args):
result_path = args.result_path
os.makedirs(result_path, exist_ok=True)
eye1 = np.array([0.36537236, 0.950235724, 0.95593375, 0.916715622, 0.367256105, 0.119113259, 0.025357503])
eye2 = np.array([0.234776169, 0.909951985, 0.944758058, 0.777862132, 0.191071674, 0.235437036, 0.089163929])
eye3 = np.array([0.870040774, 0.949833691, 0.949418545, 0.695911646, 0.191071674, 0.072576277, 0.007108896])
eye4 = np.array([0.000307991, 0.556701422, 0.952656746, 0.942345619, 0.425857186, 0.148335218, 0.017659493])
model = EmoTalk(args)
model.load_state_dict(torch.load(args.model_path, map_location=torch.device(args.device)), strict=False)
model = model.to(args.device)
model.eval()
wav_path = args.wav_path
file_name = wav_path.split('/')[-1].split('.')[0]
speech_array, sampling_rate = librosa.load(os.path.join(wav_path), sr=16000)
audio = torch.FloatTensor(speech_array).unsqueeze(0).to(args.device)
level = torch.tensor([1]).to(args.device)
person = torch.tensor([0]).to(args.device)
prediction = model.predict(audio, level, person)
prediction = prediction.squeeze().detach().cpu().numpy()
if args.post_processing:
output = np.zeros((prediction.shape[0], prediction.shape[1]))
for i in range(prediction.shape[1]):
output[:, i] = savgol_filter(prediction[:, i], 5, 2)
output[:, 8] = 0
output[:, 9] = 0
i = random.randint(0, 60)
while i < output.shape[0] - 7:
eye_num = random.randint(1, 4)
if eye_num == 1:
output[i:i + 7, 8] = eye1
output[i:i + 7, 9] = eye1
elif eye_num == 2:
output[i:i + 7, 8] = eye2
output[i:i + 7, 9] = eye2
elif eye_num == 3:
output[i:i + 7, 8] = eye3
output[i:i + 7, 9] = eye3
else:
output[i:i + 7, 8] = eye4
output[i:i + 7, 9] = eye4
time1 = random.randint(60, 180)
i = i + time1
np.save(os.path.join(result_path, "{}.npy".format(file_name)), output) # with postprocessing (smoothing and blinking)
else:
np.save(os.path.join(result_path, "{}.npy".format(file_name)), prediction) # without post-processing
def render_video(args):
wav_name = args.wav_path.split('/')[-1].split('.')[0]
image_path = os.path.join(args.result_path, wav_name)
os.makedirs(image_path, exist_ok=True)
image_temp = image_path + "/%d.png"
output_path = os.path.join(args.result_path, wav_name + ".mp4")
blender_path = args.blender_path
python_path = "./render.py"
blend_path = "./render.blend"
cmd = '{} -t 64 -b {} -P {} -- "{}" "{}" '.format(blender_path, blend_path, python_path, args.result_path, wav_name)
cmd = shlex.split(cmd)
p = subprocess.Popen(cmd, shell=False, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
while p.poll() is None:
line = p.stdout.readline()
line = line.strip()
if line:
print('[{}]'.format(line))
if p.returncode == 0:
print('Subprogram success')
else:
print('Subprogram failed')
cmd = 'ffmpeg -r 30 -i "{}" -i "{}" -pix_fmt yuv420p -s 512x768 "{}" -y'.format(image_temp, args.wav_path, output_path)
subprocess.call(cmd, shell=True)
cmd = 'rm -rf "{}"'.format(image_path)
subprocess.call(cmd, shell=True)
def main():
parser = argparse.ArgumentParser(
description='EmoTalk: Speech-driven Emotional Disentanglement for 3D Face Animation')
parser.add_argument("--wav_path", type=str, default="./audio/angry1.wav", help='path of the test data')
parser.add_argument("--bs_dim", type=int, default=52, help='number of blendshapes:52')
parser.add_argument("--feature_dim", type=int, default=832, help='number of feature dim')
parser.add_argument("--period", type=int, default=30, help='number of period')
parser.add_argument("--device", type=str, default="cuda", help='device')
parser.add_argument("--model_path", type=str, default="./pretrain_model/EmoTalk.pth",
help='path of the trained models')
parser.add_argument("--result_path", type=str, default="./result/", help='path of the result')
parser.add_argument("--max_seq_len", type=int, default=5000, help='max sequence length')
parser.add_argument("--num_workers", type=int, default=0)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--post_processing", type=bool, default=True, help='whether to use post processing')
parser.add_argument("--blender_path", type=str, default="./blender/blender", help='path of blender')
args = parser.parse_args()
test(args)
render_video(args)
if __name__ == "__main__":
main()