-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtest.py
96 lines (82 loc) · 5.57 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import numpy as np
import argparse
import os
import torch
import time
from data_loader import get_dataloaders
from SelfTalk import SelfTalk
@torch.no_grad()
def test(args, model, test_loader, epoch):
result_path = os.path.join(args.dataset, args.result_path)
result_path = result_path + '_' + str(args.feature_dim) + '_' + str(time.strftime("%m_%d_%H_%M", time.localtime()))
os.makedirs(result_path, exist_ok=True)
model.load_state_dict(
torch.load(os.path.join(args.save_path, '{}_model.pth'.format(epoch)), map_location=torch.device('cpu')))
model = model.to(args.device)
model.eval()
for audio, vertice, template, file_name in test_loader:
# to gpu
audio, vertice, template = audio.to(args.device), vertice.to(args.device), template.to(args.device)
prediction, lip_features, logits = model.predict(audio, template)
prediction = prediction.squeeze() # (seq_len, V*3)
prediction = prediction.reshape(prediction.shape[0], -1, 3)
np.save(os.path.join(result_path, file_name[0].split(".")[0] + ".npy"), prediction.detach().cpu().numpy())
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def main():
# VOCASET
parser = argparse.ArgumentParser(
description='SelfTalk: A Self-Supervised Commutative Training Diagram to Comprehend 3D Talking Faces')
parser.add_argument("--lr", type=float, default=0.0001, help='learning rate')
parser.add_argument("--dataset", type=str, default="vocaset", help='vocaset or BIWI')
parser.add_argument("--vertice_dim", type=int, default=5023 * 3,
help='number of vertices - 5023*3 for vocaset; 23370*3 for BIWI')
parser.add_argument("--feature_dim", type=int, default=512, help='512 for vocaset; 1024 for BIWI')
parser.add_argument("--period", type=int, default=30, help='period in PPE - 30 for vocaset; 25 for BIWI')
parser.add_argument("--wav_path", type=str, default="wav", help='path of the audio signals')
parser.add_argument("--vertices_path", type=str, default="vertices_npy", help='path of the ground truth')
parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help='gradient accumulation')
parser.add_argument("--max_epoch", type=int, default=100, help='number of epochs')
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--template_file", type=str, default="templates.pkl", help='path of the personalized templates')
parser.add_argument("--save_path", type=str, default="save", help='path of the trained models')
parser.add_argument("--result_path", type=str, default="result", help='path to the predictions')
parser.add_argument("--train_subjects", type=str, default="FaceTalk_170728_03272_TA"
" FaceTalk_170904_00128_TA FaceTalk_170725_00137_TA FaceTalk_170915_00223_TA"
" FaceTalk_170811_03274_TA FaceTalk_170913_03279_TA"
" FaceTalk_170904_03276_TA FaceTalk_170912_03278_TA")
parser.add_argument("--val_subjects", type=str, default="FaceTalk_170811_03275_TA"
" FaceTalk_170908_03277_TA")
parser.add_argument("--test_subjects", type=str, default="FaceTalk_170809_00138_TA"
" FaceTalk_170731_00024_TA")
args = parser.parse_args()
# BIWI
# parser = argparse.ArgumentParser(description='SelfTalk: A Self-Supervised Commutative Training Diagram to Comprehend 3D Talking Faces')
# parser.add_argument("--lr", type=float, default=0.0001, help='learning rate')
# parser.add_argument("--dataset", type=str, default="BIWI", help='vocaset or BIWI')
# parser.add_argument("--vertice_dim", type=int, default=23370*3, help='number of vertices - 5023*3 for vocaset; 23370*3 for BIWI')
# parser.add_argument("--feature_dim", type=int, default=1024, help='512 for vocaset; 1024 for BIWI')
# parser.add_argument("--period", type=int, default=25, help='period in PPE - 30 for vocaset; 25 for BIWI')
# parser.add_argument("--wav_path", type=str, default= "wav", help='path of the audio signals')
# parser.add_argument("--vertices_path", type=str, default="vertices_npy", help='path of the ground truth')
# parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help='gradient accumulation')
# parser.add_argument("--max_epoch", type=int, default=100, help='number of epochs')
# parser.add_argument("--device", type=str, default="cuda")
# parser.add_argument("--template_file", type=str, default="templates.pkl", help='path of the personalized templates')
# parser.add_argument("--save_path", type=str, default="save", help='path of the trained models')
# parser.add_argument("--result_path", type=str, default="result", help='path to the predictions')
# parser.add_argument("--train_subjects", type=str, default="F2 F3 F4 M3 M4 M5")
# parser.add_argument("--val_subjects", type=str, default="F2 F3 F4 M3 M4 M5")
# parser.add_argument("--test_subjects", type=str, default="F1 F5 F6 F7 F8 M1 M2 M6")
# args = parser.parse_args()
# build model
model = SelfTalk(args)
print("model parameters: ", count_parameters(model))
# to cuda
assert torch.cuda.is_available()
model = model.to(args.device)
# load data
dataset = get_dataloaders(args)
test(args, model, dataset["test"], epoch=args.max_epoch)
if __name__ == "__main__":
main()