-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathvalidate_yolo.py
150 lines (116 loc) · 4.73 KB
/
validate_yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import cv2
import toml
import sys
import os
import time
import json
import numpy as np
from IPython.display import display, Image, clear_output
sys.path.append(os.path.abspath("data_management"))
sys.path.append(os.path.abspath("onnx_models"))
sys.path.append(os.path.abspath("hardware"))
import data_preprocessing as dprep
import data_postprocessing as dpostp
import onnx_inference as onnx_inf
import validate as val
yolo_cfg = toml.load('yolov5n.toml')
inf_exec = yolo_cfg['inf_exec']
imgsz = yolo_cfg['input_data']['imgsz']
conf_thres = yolo_cfg['predictor']['conf_thres']
iou_thres = yolo_cfg['predictor']['iou_thres']
classes = yolo_cfg['predictor']['classes']
if not classes:
classes = None
onnx_model_path = yolo_cfg['onnx_model_path']
if inf_exec == "fpga":
onnx_model_path = f"{onnx_model_path.split('.onnx')[0]}_head.onnx"
visualize = yolo_cfg['visualize']
val_data_path = yolo_cfg['val_data_path']
out_img_path = yolo_cfg['out_img_path']
input_source = yolo_cfg['source']
bitstream_path = yolo_cfg['hardware']['bitstream_path']
weights_lookup_table = yolo_cfg['hardware']['weights_lookup_table']
weights_path = yolo_cfg['hardware']['weights_path']
stride, names, session, output_names = onnx_inf.load_model(onnx_model_path)
if inf_exec == "fpga":
import fpgaconvnet_driver as hw_part
#########################
### fpgaConvNet Setup ###
#########################
# initialise partition
partition = hw_part.Partition(bitstream_path, 5)
# add input buffers
partition.add_input_buffer(0, 0, [320, 320, 3], bp=12)
# add output buffers
partition.add_output_buffer(2, 2, [40, 40, 256], bp=9, streams=2)
partition.add_output_buffer(3, 3, [20, 20, 256], bp=9, streams=2)
partition.add_output_buffer(4, 4, [10, 10, 256], bp=9, streams=2)
# create fifos
partition.add_fifo(0, 0, 2, 40*40*64 , burst=6400)
partition.add_fifo(1, 1, 1, 20*20*128, burst=6400)
# # setup hardware
partition.reset_hardware()
# p.start_hardware()
# get the lookup table for the weights
with open(weights_lookup_table, "r") as f:
lookup = json.load(f)
# iterate over the weights
for layer, idx in lookup.items():
# allocate weights and load them
start_time = time.perf_counter()
partition.reload_weights(idx, f"{weights_path}/{layer}.dat")
pred_time = (time.perf_counter() - start_time)*1000
print(f"[{idx}] {layer} loaded! ({pred_time:.2f} ms)")
# setup hardware
partition.reset_hardware()
partition.start_hardware()
val_data = val.get_val_data(val_data_path)
iouv = np.linspace(0.5, 0.95, 10)
niou = iouv.size
seen = 0
stats = []
for img, labels in val_data:
orig_img = img.copy()
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = dprep.img_preprocess(img, imgsz, stride)
if inf_exec == "cpu":
predictions, pred_time = onnx_inf.model_inf(img, session, output_names)
elif inf_exec == "fpga":
out0, out1, out2, pred_time = hw_part.run_fpgaconvnet(partition, img[0])
start_time = time.perf_counter()
predictions = session.run(output_names, {
"/model.24/m.0/Conv_output_0": np.expand_dims(out0[:255,:,:], axis=0),
"/model.24/m.1/Conv_output_0": np.expand_dims(out1[:255,:,:], axis=0),
"/model.24/m.2/Conv_output_0": np.expand_dims(out2[:255,:,:], axis=0),
})[0]
predictions = dpostp.yolo_nms(predictions, conf_thres=0.001, iou_thres=0.6, classes=classes)
for pred in predictions:
seen += 1
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
correct = np.zeros((npr, niou), dtype=bool)
if npr == 0:
if nl:
stats.append((correct, *np.zeros((2, 0)), labels[:, 0]))
predn = pred.copy()
predn[:, :4] = dpostp.scale_boxes((imgsz, imgsz), predn[:, :4], orig_img.shape).round()
if nl:
labelsn = labels.copy()
correct = val.process_batch(predn, labelsn, iouv)
stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
# Compute metrics
stats = [np.concatenate(x, 0) for x in zip(*stats)]
if len(stats) and stats[0].any():
tp, fp, p, r, f1, ap, ap_class = val.ap_per_class(*stats, names=names)
ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
nt = np.bincount(stats[3].astype(int), minlength=80) # number of targets per class
# Print results
print("*"*40)
print("Class: {}".format("all"))
print("Images: {}".format(seen))
print("Instances: {}".format(nt.sum()))
print("Precision: {:.4f}".format(mp))
print("Recall: {:.4f}".format(mr))
print("[email protected]: {:.4f}".format(map50))
print("[email protected]:0.95: {:.4f}".format(map))
print("*"*40)