-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.cxx
135 lines (124 loc) · 5.22 KB
/
main.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <utility>
#include <vector>
#include <iostream>
#include "inc/main.hxx"
using namespace std;
#pragma region CONFIGURATION
#ifndef TYPE
/** Type of PageRank values. */
#define TYPE double
#endif
#ifndef MAX_THREADS
/** Maximum number of threads to use. */
#define MAX_THREADS 64
#endif
#ifndef REPEAT_BATCH
/** Number of times to repeat each batch. */
#define REPEAT_BATCH 5
#endif
#ifndef REPEAT_METHOD
/** Number of times to repeat each method. */
#define REPEAT_METHOD 5
#endif
#pragma endregion
#pragma region METHODS
#pragma region PERFORM EXPERIMENT
/**
* Perform the experiment.
* @param x input graph
* @param xt transpose of the input graph
* @param fstream input file stream
* @param rows number of rows/vetices in the graph
* @param size number of lines/edges (temporal) in the graph
* @param batchFraction fraction of edges to use in each batch
*/
template <class G, class H>
void runExperiment(G& x, H& xt, istream& fstream, size_t rows, size_t size, double batchFraction) {
using K = typename G::key_type;
using V = TYPE;
int repeat = REPEAT_METHOD;
int numThreads = MAX_THREADS;
// Follow a specific result logging format, which can be easily parsed later.
auto glog = [&](const auto& ans, const auto& ref, const char *technique, int numThreads, double deletionsf, double insertionsf, int batchIndex, V frontierTolerance=0.0, V pruneTolerance=0.0) {
auto err = l1NormDeltaOmp(ans.ranks, ref.ranks);
printf(
"{-%.3e/+%.3e batchf, %03d batchi, %03d threads, %.0e frontier, %.0e prune} -> {%09.1fms, %09.1fms init, %09.1fms mark, %09.1fms comp, %03d iter, %.2e err} %s\n",
deletionsf, insertionsf, batchIndex, numThreads, frontierTolerance, pruneTolerance,
ans.time, ans.initializationTime, ans.markingTime, ans.computationTime, ans.iterations, err, technique
);
};
V tolerance = 1e-10;
V frontierTolerance = 1e-6;
V pruneTolerance = 1e-6;
vector<tuple<K, K>> deletions;
vector<tuple<K, K>> insertions;
// Get ranks of vertices on original graph (static).
auto r0 = pagerankStaticOmp(xt, PagerankOptions<V>(1, 1e-100));
auto R10 = r0.ranks;
auto R20 = r0.ranks;
auto R30 = r0.ranks;
auto R31 = r0.ranks;
// Get ranks of vertices on updated graph (dynamic).
for (int batchIndex=0; batchIndex<BATCH_LENGTH; ++batchIndex) {
auto y = duplicate(x);
insertions.clear();
auto fb = [&](auto u, auto v, auto w) {
insertions.push_back({u, v});
y.addEdge(u, v);
};
readTemporalDo(fstream, false, false, rows, size_t(batchFraction * size), fb);
updateOmpU(y);
auto yt = transposeWithDegreeOmp(y);
LOG(""); print(y); printf(" (insertions=%zu)\n", insertions.size());
auto s0 = pagerankStaticOmp(yt, PagerankOptions<V>(1, 1e-100));
// Find multi-threaded OpenMP-based Static PageRank.
auto a0 = pagerankStaticOmp<false>(yt, PagerankOptions<V>(repeat, tolerance));
glog(a0, s0, "pagerankStaticOmp", numThreads, 0.0, batchFraction, batchIndex);
// Find multi-threaded OpenMP-based Naive-dynamic PageRank.
auto a1 = pagerankNaiveDynamicOmp<true>(yt, &R10, {repeat, tolerance});
glog(a1, s0, "pagerankNaiveDynamicOmp", numThreads, 0.0, batchFraction, batchIndex);
// Find multi-threaded OpenMP-based Traversal-based Dynamic PageRank.
auto a2 = pagerankDynamicTraversalOmp<true>(x, xt, y, yt, deletions, insertions, &R20, {repeat, tolerance});
glog(a2, s0, "pagerankDynamicTraversalOmp", numThreads, 0.0, batchFraction, batchIndex);
// Find multi-threaded OpenMP-based Frontier-based Dynamic PageRank.
auto a3 = pagerankDynamicFrontierOmp<true, true>(x, xt, y, yt, deletions, insertions, &R30, {repeat, tolerance, frontierTolerance});
glog(a3, s0, "pagerankDynamicFrontierOmp", numThreads, 0.0, batchFraction, batchIndex, frontierTolerance);
auto b3 = pagerankPruneDynamicFrontierOmp<true, true>(x, xt, y, yt, deletions, insertions, &R31, {repeat, tolerance, frontierTolerance, pruneTolerance});
glog(b3, s0, "pagerankPruneDynamicFrontierOmp", numThreads, 0.0, batchFraction, batchIndex, frontierTolerance, pruneTolerance);
copyValuesOmpW(R10, a1.ranks);
copyValuesOmpW(R20, a2.ranks);
copyValuesOmpW(R30, a3.ranks);
copyValuesOmpW(R31, b3.ranks);
swap(x, y);
swap(xt, yt);
}
}
/**
* Main function.
* @param argc argument count
* @param argv argument values
* @returns zero on success, non-zero on failure
*/
int main(int argc, char **argv) {
char *file = argv[1];
size_t rows = strtoull(argv[2], nullptr, 10);
size_t size = strtoull(argv[3], nullptr, 10);
double batchFraction = strtod(argv[5], nullptr);
omp_set_num_threads(MAX_THREADS);
LOG("OMP_NUM_THREADS=%d\n", MAX_THREADS);
LOG("Loading graph %s ...\n", file);
DiGraph<uint32_t> x;
ifstream fstream(file);
readTemporalOmpW(x, fstream, false, false, rows, size_t(0.90 * size)); LOG(""); print(x); printf(" (90%%)\n");
auto fl = [](auto u) { return true; };
x = addSelfLoopsOmp(x, None(), fl); LOG(""); print(x); printf(" (selfLoopAllVertices)\n");
auto xt = transposeWithDegreeOmp(x); LOG(""); print(xt); printf(" (transposeWithDegree)\n");
runExperiment(x, xt, fstream, rows, size, batchFraction);
printf("\n");
return 0;
}
#pragma endregion
#pragma endregion