forked from AllenDowney/PoliticalAlignmentCaseStudy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
472 lines (364 loc) · 14.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import re
import os
class FixedWidthVariables(object):
"""Represents a set of variables in a fixed width file."""
def __init__(self, variables, index_base=0):
"""Initializes.
variables: DataFrame
index_base: are the indices 0 or 1 based?
Attributes:
colspecs: list of (start, end) index tuples
names: list of string variable names
"""
self.variables = variables
self.colspecs = variables[['start', 'end']] - index_base
# convert colspecs to a list of pair of int
self.colspecs = self.colspecs.astype(np.int).values.tolist()
self.names = variables['name']
def read_fixed_width(self, filename, **options):
"""Reads a fixed width ASCII file.
filename: string filename
returns: DataFrame
"""
df = pd.read_fwf(filename,
colspecs=self.colspecs,
names=self.names,
**options)
return df
def read_stata_dict(dct_file, **options):
"""Reads a Stata dictionary file.
dct_file: string filename
options: dict of options passed to open()
returns: FixedWidthVariables object
"""
type_map = dict(byte=int, int=int, long=int, float=float,
double=float, numeric=float)
var_info = []
with open(dct_file, **options) as f:
for line in f:
match = re.search( r'_column\(([^)]*)\)', line)
if not match:
continue
start = int(match.group(1))
t = line.split()
vtype, name, fstring = t[1:4]
name = name.lower()
if vtype.startswith('str'):
vtype = str
else:
vtype = type_map[vtype]
long_desc = ' '.join(t[4:]).strip('"')
var_info.append((start, vtype, name, fstring, long_desc))
columns = ['start', 'type', 'name', 'fstring', 'desc']
variables = pd.DataFrame(var_info, columns=columns)
# fill in the end column by shifting the start column
variables['end'] = variables.start.shift(-1)
variables.loc[len(variables)-1, 'end'] = 0
dct = FixedWidthVariables(variables, index_base=1)
return dct
def read_stata(dct_name, dat_name, **options):
"""Reads Stata files from the given directory.
dirname: string
returns: DataFrame
"""
dct = read_stata_dict(dct_name)
df = dct.read_fixed_width(dat_name, **options)
return df
def read_gss(dirname):
"""Reads GSS files from the given directory.
In general, Pandas can read data in most standard formats,
including CSV, Excel, Stata, and SPSS.
Unfortunately, the current version of Pandas cannot
read the data generated by GSS.
As a workaround, I wrote functions to read the
Stata dictionary file and use the information there to
read the Stata data file using `pd.read_fwf`,
which reads fixed-width files.
dirname: string
returns: DataFrame
"""
dct_file = os.path.join(dirname, 'GSS.dct')
dct = read_stata_dict(dct_file)
data_file = os.path.join(dirname, 'GSS.dat.gz')
gss = dct.read_fixed_width(data_file, compression='gzip')
return gss
def gss_replace_invalid(df):
"""Replace invalid data with NaN.
df: DataFrame
"""
df.realinc.replace([0], np.nan, inplace=True)
df.educ.replace([98, 99], np.nan, inplace=True)
# 89 means 89 or older
df.age.replace([98, 99], np.nan, inplace=True)
df.cohort.replace([9999], np.nan, inplace=True)
df.adults.replace([9], np.nan, inplace=True)
df.colhomo.replace([0, 8, 9], np.nan, inplace=True)
df.libhomo.replace([0, 8, 9], np.nan, inplace=True)
df.cappun.replace([0, 8, 9], np.nan, inplace=True)
df.gunlaw.replace([0, 8, 9], np.nan, inplace=True)
df.grass.replace([0, 8, 9], np.nan, inplace=True)
df.fepol.replace([0, 8, 9], np.nan, inplace=True)
df.abany.replace([0, 8, 9], np.nan, inplace=True)
df.prayer.replace([0, 8, 9], np.nan, inplace=True)
df.sexeduc.replace([0, 8, 9], np.nan, inplace=True)
df.premarsx.replace([0, 8, 9], np.nan, inplace=True)
df.xmarsex.replace([0, 8, 9], np.nan, inplace=True)
df.homosex.replace([0, 5, 8, 9], np.nan, inplace=True)
df.racmar.replace([0, 8, 9], np.nan, inplace=True)
df.spanking.replace([0, 8, 9], np.nan, inplace=True)
df.racpres.replace([0, 8, 9], np.nan, inplace=True)
df.fear.replace([0, 8, 9], np.nan, inplace=True)
df.databank.replace([0, 8, 9], np.nan, inplace=True)
df.affrmact.replace([0, 8, 9], np.nan, inplace=True)
df.happy.replace([0, 8, 9], np.nan, inplace=True)
df.hapmar.replace([0, 8, 9], np.nan, inplace=True)
df.natspac.replace([0, 8, 9], np.nan, inplace=True)
df.natenvir.replace([0, 8, 9], np.nan, inplace=True)
df.natheal.replace([0, 8, 9], np.nan, inplace=True)
df.natcity.replace([0, 8, 9], np.nan, inplace=True)
df.natcrime.replace([0, 8, 9], np.nan, inplace=True)
df.natdrug.replace([0, 8, 9], np.nan, inplace=True)
df.nateduc.replace([0, 8, 9], np.nan, inplace=True)
df.natrace.replace([0, 8, 9], np.nan, inplace=True)
df.natarms.replace([0, 8, 9], np.nan, inplace=True)
df.nataid.replace([0, 8, 9], np.nan, inplace=True)
df.natfare.replace([0, 8, 9], np.nan, inplace=True)
df.health.replace([0, 8, 9], np.nan, inplace=True)
df.life.replace([0, 8, 9], np.nan, inplace=True)
df.helpful.replace([0, 8, 9], np.nan, inplace=True)
df.fair.replace([0, 8, 9], np.nan, inplace=True)
df.trust.replace([0, 8, 9], np.nan, inplace=True)
df.conclerg.replace([0, 8, 9], np.nan, inplace=True)
df.coneduc.replace([0, 8, 9], np.nan, inplace=True)
df.confed.replace([0, 8, 9], np.nan, inplace=True)
df.conpress.replace([0, 8, 9], np.nan, inplace=True)
df.conjudge.replace([0, 8, 9], np.nan, inplace=True)
df.conlegis.replace([0, 8, 9], np.nan, inplace=True)
df.conarmy.replace([0, 8, 9], np.nan, inplace=True)
df.spkhomo.replace([0, 8, 9], np.nan, inplace=True)
df.spkath.replace([0, 8, 9], np.nan, inplace=True)
df.colath.replace([0, 8, 9], np.nan, inplace=True)
df.libath.replace([0, 8, 9], np.nan, inplace=True)
df.spkrac.replace([0, 8, 9], np.nan, inplace=True)
df.spkcom.replace([0, 8, 9], np.nan, inplace=True)
df.spkmil.replace([0, 8, 9], np.nan, inplace=True)
df.satjob.replace([0, 8, 9], np.nan, inplace=True)
df.satfin.replace([0, 8, 9], np.nan, inplace=True)
df.finrela.replace([0, 8, 9], np.nan, inplace=True)
df.union_.replace([0, 8, 9], np.nan, inplace=True)
df.res16.replace([0, 8, 9], np.nan, inplace=True)
df.fund.replace([0, 8, 9], np.nan, inplace=True)
df.memchurh.replace([0, 8, 9], np.nan, inplace=True)
df.fund16.replace([0, 8, 9], np.nan, inplace=True)
df.reliten.replace([0, 8, 9], np.nan, inplace=True)
df.postlife.replace([0, 8, 9], np.nan, inplace=True)
df.pray.replace([0, 8, 9], np.nan, inplace=True)
df.sprel16.replace([0, 8, 9], np.nan, inplace=True)
df.hunt.replace([0, 8, 9], np.nan, inplace=True)
df.polviews.replace([0, 8, 9], np.nan, inplace=True)
df.compuse.replace([0, 8, 9], np.nan, inplace=True)
df.degree.replace([8, 9], np.nan, inplace=True)
df.padeg.replace([8, 9], np.nan, inplace=True)
df.madeg.replace([8, 9], np.nan, inplace=True)
df.spdeg.replace([8, 9], np.nan, inplace=True)
df.partyid.replace([8, 9], np.nan, inplace=True)
df.chldidel.replace([-1, 8, 9], np.nan, inplace=True)
df.attend.replace([9], np.nan, inplace=True)
df.childs.replace([9], np.nan, inplace=True)
df.adults.replace([9], np.nan, inplace=True)
df.divorce.replace([0, 8, 9], np.nan, inplace=True)
df.agewed.replace([0, 98, 99], np.nan, inplace=True)
df.relig.replace([0, 98, 99], np.nan, inplace=True)
df.relig16.replace([0, 98, 99], np.nan, inplace=True)
df.age.replace([0, 98, 99], np.nan, inplace=True)
# note: sibs contains some unlikely numbers
df.sibs.replace([-1, 98, 99], np.nan, inplace=True)
df.educ.replace([97, 98, 99], np.nan, inplace=True)
df.maeduc.replace([97, 98, 99], np.nan, inplace=True)
df.paeduc.replace([97, 98, 99], np.nan, inplace=True)
df.speduc.replace([97, 98, 99], np.nan, inplace=True)
df.cohort.replace([0, 9999], np.nan, inplace=True)
df.marcohrt.replace([0, 9999], np.nan, inplace=True)
df.phone.replace([0, 2, 9], np.nan, inplace=True)
df.owngun.replace([0, 3, 8, 9], np.nan, inplace=True)
df.pistol.replace([0, 3, 8, 9], np.nan, inplace=True)
df.class_.replace([0, 5, 8, 9], np.nan, inplace=True)
df.pres04.replace([0, 8, 9], np.nan, inplace=True)
df.pres08.replace([0, 8, 9], np.nan, inplace=True)
df.pres12.replace([0, 8, 9], np.nan, inplace=True)
def sample_rows(df, nrows, replace=False):
"""Choose a sample of rows from a DataFrame.
df: DataFrame
nrows: number of rows
replace: whether to sample with replacement
returns: DataDf
"""
indices = np.random.choice(df.index, nrows, replace=replace)
sample = df.loc[indices]
return sample
def resample_rows(df):
"""Resamples rows from a DataFrame.
df: DataFrame
returns: DataFrame
"""
return sample_rows(df, len(df), replace=True)
def resample_rows_weighted(df, column='finalwgt'):
"""Resamples a DataFrame using probabilities proportional to given column.
df: DataFrame
column: string column name to use as weights
returns: DataFrame
"""
weights = df[column].copy()
weights /= sum(weights)
indices = np.random.choice(df.index, len(df), replace=True, p=weights)
sample = df.loc[indices]
return sample
def resample_by_year(df, column='wtssall'):
"""Resample rows within each year.
df: DataFrame
column: string name of weight variable
returns DataFrame
"""
grouped = df.groupby('year')
samples = [resample_rows_weighted(group, column)
for _, group in grouped]
sample = pd.concat(samples, ignore_index=True)
return sample
def values(series):
"""Count the values and sort.
series: pd.Series
returns: series mapping from values to frequencies
"""
return series.value_counts().sort_index()
def count_by_year(gss, varname):
"""Groups by category and year and counts.
gss: DataFrame
varname: string variable to group by
returns: DataFrame with one row per year, one column per category.
"""
grouped = gss.groupby([varname, 'year'])
count = grouped[varname].count().unstack(level=0)
# note: the following is not ideal, because it does not
# distinguish 0 from NA, but in this dataset the only
# zeros are during years when the question was not asked.
count = count.replace(0, np.nan).dropna()
return count
def fill_missing(df, varname, badvals=[98, 99]):
"""Fill missing data with random values.
df: DataFrame
varname: string column name
badvals: list of values to be replaced
"""
# replace badvals with NaN
df[varname].replace(badvals, np.nan, inplace=True)
# get the index of rows missing varname
null = df[varname].isnull()
n_missing = sum(null)
# choose a random sample from the non-missing values
fill = np.random.choice(df[varname].dropna(), n_missing, replace=True)
# replace missing data with the samples
df.loc[null, varname] = fill
# return the number of missing values replaced
return n_missing
def round_into_bins(df, var, bin_width, high=None, low=0):
"""Rounds values down to the bin they belong in.
df: DataFrame
var: string variable name
bin_width: number, width of the bins
returns: array of bin values
"""
if high is None:
high = df[var].max()
bins = np.arange(low, high+bin_width, bin_width)
indices = np.digitize(df[var], bins)
return bins[indices-1]
def underride(d, **options):
"""Add key-value pairs to d only if key is not in d.
d: dictionary
options: keyword args to add to d
"""
for key, val in options.items():
d.setdefault(key, val)
return d
def decorate(**options):
"""Decorate the current axes.
Call decorate with keyword arguments like
decorate(title='Title',
xlabel='x',
ylabel='y')
The keyword arguments can be any of the axis properties
https://matplotlib.org/api/axes_api.html
In addition, you can use `legend=False` to suppress the legend.
And you can use `loc` to indicate the location of the legend
(the default value is 'best')
"""
loc = options.pop('loc', 'best')
if options.pop('legend', True):
legend(loc=loc)
plt.gca().set(**options)
plt.tight_layout()
def legend(**options):
"""Draws a legend only if there is at least one labeled item.
options are passed to plt.legend()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.legend.html
"""
underride(options, loc='best')
ax = plt.gca()
handles, labels = ax.get_legend_handles_labels()
#TODO: don't draw if there are none
ax.legend(handles, labels, **options)
from statsmodels.nonparametric.smoothers_lowess import lowess
def make_lowess(series):
"""Use LOWESS to compute a smooth line.
series: pd.Series
returns: pd.Series
"""
endog = series.values
exog = series.index.values
smooth = lowess(endog, exog)
index, data = np.transpose(smooth)
return pd.Series(data, index=index)
def plot_series_lowess(series, color):
"""Plots a series of data points and a smooth line.
series: pd.Series
color: string or tuple
"""
series.plot(lw=0, marker='o', color=color, alpha=0.5)
smooth = make_lowess(series)
smooth.plot(label='_', color=color)
def plot_columns_lowess(df, columns, colors):
"""Plot the columns in a DataFrame.
df: pd.DataFrame
columns: list of column names, in the desired order
colors: mapping from column names to colors
"""
for col in columns:
series = df[col]
plot_series_lowess(series, colors[col])
def anchor_legend(x, y):
"""Put the legend at the given locationself.
x: axis coordinate
y: axis coordinate
"""
plt.legend(bbox_to_anchor=(x, y), loc='upper left', ncol=1)
def resample_rows_weighted(df, weights):
"""Resamples a DataFrame using probabilities proportional to given column.
df: DataFrame
weights: sequence of weights
returns: DataFrame
"""
return df.sample(n=len(df), replace=True, weights=weights)
def resample_by_year(df, column):
"""Resample rows within each year.
df: DataFrame
column: string name of weight variable
returns DataFrame
"""
grouped = df.groupby('year')
samples = [resample_rows_weighted(group, column)
for _, group in grouped]
sample = pd.concat(samples, ignore_index=True)
return sample