-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
146 lines (120 loc) · 5.23 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from flask import Flask, request, jsonify
import pymc as pm
import arviz as az
from pymc_marketing.mmm import DelayedSaturatedMMM
import pandas as pd
import numpy as np
import json
import logging
from google.cloud import logging as google_logging
import io
import os
from celery import Celery
__version__ = "0.3"
running_in_google_cloud = os.environ.get('RUNNING_IN_GOOGLE_CLOUD', 'False').lower() == 'true'
# Configure standard logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
if running_in_google_cloud:
# Configure Google Cloud Logging only if running in Google Cloud
from google.cloud import logging as google_logging
# Instantiates a Google Cloud logging client
logging_client = google_logging.Client()
# The name of the log to write to
log_name = 'GPT-MMM'
# Sets up Google Cloud logging
cloud_handler = google_logging.handlers.CloudLoggingHandler(logging_client, name=log_name)
logger.addHandler(cloud_handler)
else:
# Additional local logging configuration (if needed)
# For example, you can set a file handler or a stream handler for local logging
pass
app = Flask(__name__)
app.config['broker_url'] = 'redis://localhost:6379/0'
app.config['result_backend'] = 'redis://localhost:6379/0'
celery = Celery(app.name, broker=app.config['broker_url'])
celery.conf.update(app.config)
celery.conf.update(
worker_pool='prefork', # Use prefork (multiprocessing)
task_always_eager=False # Ensure tasks are not run locally by the worker that started them
)
logging.info(f"App started. Version: {__version__}")
@celery.task(bind=True)
def run_mmm_task(self, data):
try:
logging.info("Starting run_mmm_task")
df = pd.read_json(io.StringIO(data["df"]), orient="split")
logging.debug(f"DataFrame loaded with {len(df)} rows.")
# Extract optional parameters from 'data'
date_column = data.get('date_column', 'date')
channel_columns = data.get('channel_columns', [])
adstock_max_lag = data.get('adstock_max_lag', 8)
yearly_seasonality = data.get('yearly_seasonality', 2)
logging.debug(f"Parameters extracted: date_column={date_column}, channel_columns={channel_columns}, adstock_max_lag={adstock_max_lag}, yearly_seasonality={yearly_seasonality}")
# Define and fit the MMM model
mmm = DelayedSaturatedMMM(
date_column=date_column,
channel_columns=channel_columns,
adstock_max_lag=adstock_max_lag,
yearly_seasonality=yearly_seasonality,
)
logging.info("MMM model defined.")
X = df.drop('sales', axis=1)
y = df['sales']
logging.debug("Starting model fitting.")
mmm.fit(X, y, chains=1, cores=1)
logging.info("Model fitting completed.")
# Extract and return summary statistics
summary = az.summary(mmm.fit_result,
var_names=[
"intercept",
"likelihood_sigma",
"beta_channel",
"alpha",
"lam",],
kind="stats")
summary_json = summary.to_json(orient="split")
logging.info("Summary statistics extracted.")
logging.info("run_mmm_task completed successfully.")
logging.debug(f"summary_json={summary_json}")
return {"status": "completed", "summary": summary_json}
except Exception as e:
logging.error(f"run_mmm_task failed: {str(e)}\nJSON data: {data}", exc_info=True)
return {"status": "failed", "error": str(e)}
@app.route('/run_mmm_async', methods=['POST'])
def run_mmm_async():
try:
logging.info("Received request to run_mmm_async")
data = request.get_json()
logging.debug(f"run_mmm_async request data: {data}")
task = run_mmm_task.apply_async(args=[data])
logging.info(f"Task submitted with ID: {task.id}")
# session[task.id] = "STARTED"
return jsonify({"task_id": task.id})
except Exception as e:
logging.error(f"Error in run_mmm_async: {str(e)}", exc_info=True)
return jsonify({"error": str(e)}), 500
@app.route('/get_results', methods=['GET'])
def get_results():
try:
task_id = request.args.get('task_id')
logging.info(f"Received request for get_results with task_id: {task_id}")
# if task_id not in session:
# return jsonify({'status': "failure", "error":'No such task'}), 404
task = run_mmm_task.AsyncResult(task_id)
if task.state == 'PENDING':
logging.info(f"Task {task_id} is still pending.")
response = {"status": "pending"}
elif task.state != 'FAILURE':
logging.info(f"Task {task_id} completed successfully.")
response = task.result
else:
logging.error(f"Task {task_id} failed.")
response = {"status": "failure", "error": str(task.info)}
return jsonify(response)
except Exception as e:
logging.error(f"Error in get_results: {str(e)}", exc_info=True)
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
port = int(os.environ.get('PORT', 8080))
app.run(host='0.0.0.0', port=port)