We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Traceback (most recent call last): File "/opt/conda/lib/python3.11/site-packages/sympy/core/expr.py", line 4035, in _mag mag_first_dig = int(ceil(log10(xpos))) ^^^^^^^^^^^^^^^^^ OverflowError: cannot convert float infinity to integer During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/larec/tzrec/tests/test_item.py", line 45, in <module> trt_gm = torch_tensorrt.dynamo.compile(exp_program, [a,b],min_block_size=1) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch_tensorrt/dynamo/_compiler.py", line 291, in compile trt_gm = compile_module( ^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch_tensorrt/dynamo/_compiler.py", line 480, in compile_module parse_graph_io(gm, dryrun_tracker) File "/opt/conda/lib/python3.11/site-packages/torch_tensorrt/dynamo/utils.py", line 423, in parse_graph_io output_shapes = get_graph_io_attrs(output_nodes, "shape") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch_tensorrt/dynamo/utils.py", line 402, in get_graph_io_attrs graph_io_attrs.append(attr_fn(metadata)) ^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch_tensorrt/dynamo/utils.py", line 365, in unwrap_tensor_shape min_max_opt = extract_var_range_info(tensor) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch_tensorrt/dynamo/utils.py", line 342, in extract_var_range_info min_val, max_val, opt_val = int(var_range.lower), int(var_range.upper), int(var_val) ^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/sympy/core/expr.py", line 308, in __int__ r = self.round(2) ^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/sympy/core/expr.py", line 3856, in round digits_to_decimal = _mag(x) # _mag(12) = 2, _mag(.012) = -1 ^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/sympy/core/expr.py", line 4037, in _mag mag_first_dig = int(ceil(Float(mpf_log(xpos._mpf_, 53))/log(10))) ^^^^^^^^^^ AttributeError: 'Infinity' object has no attribute '_mpf_'
Steps to reproduce the behavior:
import torch.nn as nn import torch from typing import Any, Callable, Dict, List, Optional, Tuple, Union @torch.fx.wrap def _int_item(x: torch.Tensor) -> int: return int(x.item()) @torch.fx.wrap def _tensor(x :List[int])->torch.Tensor: return torch.tensor(x) class Item(nn.Module): def forward(self, x:torch.Tensor,y:torch.Tensor): values = [] values.append(x.shape) values.append(y.shape) values = _tensor(values) group_sequence_length = _int_item(torch.max(values)) return group_sequence_length a=torch.randn(66093).cuda() b=torch.randn(50).cuda() model = Item().cuda() res = model(a,b) print(res) batch = torch.export.Dim("batch",min=1,max=1000000) batch2 = torch.export.Dim("batch2",min=1,max=1000000) dynamic_shapes={"x":{0:batch},"y": {0:batch2}} # from torch.fx import symbolic_trace from torchrec.fx import symbolic_trace model = symbolic_trace(model) import torch_tensorrt exp_program = torch.export.export(model, tuple([a,b]),dynamic_shapes=dynamic_shapes) trt_gm = torch_tensorrt.dynamo.compile(exp_program, [a,b],min_block_size=1) # # # Run inference print(trt_gm.code)
Byte Order: Little Endian CPU(s): 104 On-line CPU(s) list: 0-103 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8269CY CPU @ 2.50GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 26 Socket(s): 2 Stepping: 7 CPU max MHz: 3800.0000 CPU min MHz: 1200.0000 BogoMIPS: 5000.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.6 MiB (52 instances) L1i cache: 1.6 MiB (52 instances) L2 cache: 52 MiB (52 instances) L3 cache: 71.5 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-103 Vulnerability Itlb multihit: KVM: Mitigation: Split huge pages Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.3 [pip3] nvidia-cublas-cu12==12.1.3.1 [pip3] nvidia-cuda-runtime-cu12==12.1.105 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] torch==2.5.0+cu121 [pip3] torch_tensorrt==2.5.0 [pip3] torchmetrics==1.0.3 [pip3] torchrec==1.0.0+cu121 [pip3] triton==3.1.0 [conda] numpy 1.26.3 pypi_0 pypi [conda] nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] torch 2.5.0+cu121 pypi_0 pypi [conda] torch-tensorrt 2.5.0 pypi_0 pypi [conda] torchmetrics 1.0.3 pypi_0 pypi [conda] torchrec 1.0.0+cu121 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi
The text was updated successfully, but these errors were encountered:
@apbose I want to convert my model, but has these error.
I see #3306, and have try https://github.com/pytorch/TensorRT/pull/3279/files ,it cannot solve.
I just update the code: torch_tensorrt/dynamo/utils.py, but my next code will error
Sorry, something went wrong.
@peri044 can you take a look, seems related to the sympy calculations for dynamic shape
peri044
No branches or pull requests
Bug Description
To Reproduce
Steps to reproduce the behavior:
Expected behavior
Environment
The text was updated successfully, but these errors were encountered: