diff --git a/docs/source/refs.bib b/docs/source/refs.bib index 0d853de3cb..9fc6c108c2 100644 --- a/docs/source/refs.bib +++ b/docs/source/refs.bib @@ -633,3 +633,11 @@ @article{forgione2021dynonet year={2021}, publisher={Wiley Online Library} } + +@inproceedings{ycy2024diffapf, + title={Differentiable All-pole Filters for Time-varying Audio Systems}, + author={Chin-Yun Yu and Christopher Mitcheltree and Alistair Carson and Stefan Bilbao and Joshua D. Reiss and György Fazekas}, + booktitle={International Conference on Digital Audio Effects (DAFx)}, + year={2024}, + pages={345--352}, +} diff --git a/src/libtorchaudio/lfilter.cpp b/src/libtorchaudio/lfilter.cpp index e9b8d4eea2..454b2cbcda 100644 --- a/src/libtorchaudio/lfilter.cpp +++ b/src/libtorchaudio/lfilter.cpp @@ -151,7 +151,6 @@ class DifferentiableIIR : public torch::autograd::Function { auto a_coeffs_normalized = saved[1]; auto y = saved[2]; - int64_t n_batch = x.size(0); int64_t n_channel = x.size(1); int64_t n_order = a_coeffs_normalized.size(1); @@ -161,26 +160,24 @@ class DifferentiableIIR : public torch::autograd::Function { namespace F = torch::nn::functional; - if (a_coeffs_normalized.requires_grad()) { - auto dyda = F::pad( - DifferentiableIIR::apply(-y, a_coeffs_normalized), - F::PadFuncOptions({n_order - 1, 0})); - - da = F::conv1d( - dyda.view({1, n_batch * n_channel, -1}), - dy.reshape({n_batch * n_channel, 1, -1}), - F::Conv1dFuncOptions().groups(n_batch * n_channel)) - .view({n_batch, n_channel, -1}) - .sum(0) - .flip(1); - } + auto tmp = + DifferentiableIIR::apply(dy.flip(2).contiguous(), a_coeffs_normalized) + .flip(2); if (x.requires_grad()) { - dx = - DifferentiableIIR::apply(dy.flip(2).contiguous(), a_coeffs_normalized) - .flip(2); + dx = tmp; } + if (a_coeffs_normalized.requires_grad()) { + da = -torch::matmul( + tmp.transpose(0, 1).reshape({n_channel, 1, -1}), + F::pad(y, F::PadFuncOptions({n_order - 1, 0})) + .unfold(2, n_order, 1) + .transpose(0, 1) + .reshape({n_channel, -1, n_order})) + .squeeze(1) + .flip(1); + } return {dx, da}; } }; diff --git a/src/torchaudio/functional/filtering.py b/src/torchaudio/functional/filtering.py index b4140447ef..97ff6040dc 100644 --- a/src/torchaudio/functional/filtering.py +++ b/src/torchaudio/functional/filtering.py @@ -999,7 +999,8 @@ def _lfilter_core( def lfilter(waveform: Tensor, a_coeffs: Tensor, b_coeffs: Tensor, clamp: bool = True, batching: bool = True) -> Tensor: r"""Perform an IIR filter by evaluating difference equation, using differentiable implementation - developed independently by *Yu et al.* :cite:`ismir_YuF23` and *Forgione et al.* :cite:`forgione2021dynonet`. + developed separately by *Yu et al.* :cite:`ismir_YuF23` and *Forgione et al.* :cite:`forgione2021dynonet`. + The gradients of ``a_coeffs`` are computed based on a faster algorithm from :cite:`ycy2024diffapf`. .. devices:: CPU CUDA