diff --git a/functorch/_src/decompositions.py b/functorch/_src/decompositions.py index 11acd8fb47..afa526d1e5 100644 --- a/functorch/_src/decompositions.py +++ b/functorch/_src/decompositions.py @@ -497,6 +497,61 @@ def native_layer_norm_backward(grad_out: Tensor, input: Tensor, normalized_shape return (d_input, d_weight, d_bias) +@register_decomposition(aten.native_batch_norm_backward) +def native_batch_norm_backward(grad_out: Tensor, input: Tensor, weight: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], save_mean: Optional[Tensor], save_invstd: Optional[Tensor], train: bool, eps: float, output_mask: List[bool]) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]: + input_shape = input.shape + input_rank = input.dim() + assert input_rank >= 2, "rank of the input must be at least 2" + + axis = 1 + num_features = prod(input_shape) / input_shape[axis] + mean = save_mean + invstd = save_invstd + if train: + assert save_mean is not None and save_invstd is not None, "when train=True, save_mean and save_invstd are required" + else: + assert running_mean is not None and running_var is not None + mean = running_mean + invstd = torch.rsqrt(running_var + eps) + + broadcast_mask = [1] * input_rank + broadcast_mask[axis] = input_shape[axis] + + reduction_axes = [] + for i in range(input_rank): + if i != axis: + reduction_axes.append(i) + + mean = torch.reshape(mean, broadcast_mask) + norm = 1.0 / num_features + grad_output_sum = torch.sum(grad_out, reduction_axes) + dot_p = torch.sum(grad_out * (input - mean), reduction_axes) + + grad_mean = torch.reshape(grad_output_sum * norm, broadcast_mask) + proj_scale = torch.reshape(torch.mul(dot_p * norm, invstd * invstd), broadcast_mask) + + grad_scale = None + if weight is None: + grad_scale = torch.reshape(invstd, broadcast_mask) * 1.0 + else: + grad_scale = torch.reshape(invstd * weight, broadcast_mask) + grad_input = None + if train: + proj = (input - mean) * proj_scale + grad_input = ((grad_out - proj) - grad_mean) * grad_scale + else: + grad_input = grad_out * grad_scale + + grad_weight = None + if output_mask[1]: + grad_weight = dot_p * invstd + + grad_bias = None + if output_mask[2]: + grad_bias = grad_output_sum + return (grad_input, grad_weight, grad_bias) + + @register_decomposition(aten.clamp_min) def clamp_min(self: Tensor, min: float): return torch.clamp(self, min=min)