forked from JosephP91/obstacle-avoidance
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatch.py
42 lines (37 loc) · 1.81 KB
/
match.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import cv2
from threading import Thread
from utils import save_image, draw_matches, debug
class MatcherThread(Thread):
def __init__(self, res_1, res_2, name, config):
super(MatcherThread, self).__init__(name=name)
self.res_1 = res_1
self.res_2 = res_2
self.results = None
self.config = config
def run(self):
matcher_config = self.config.get('matcher')
# Dettagli di configurazione del matcher.
index_params = dict(algorithm=matcher_config['algorithm'], trees=matcher_config['trees'])
search_params = dict(checks=matcher_config['checks'])
matcher = cv2.FlannBasedMatcher(index_params, search_params)
matches = matcher.knnMatch(self.res_1['desc'], self.res_2['desc'], k=2)
pts_1 = []; pts_2 = []; good = []
for i, (m, n) in enumerate(matches):
# Ratio test per filtrare i match ottimali.
if m.distance < matcher_config['ratio'] * n.distance:
good.append(m)
pts_1.append(self.res_1['kp'][m.queryIdx].pt)
pts_2.append(self.res_2['kp'][m.trainIdx].pt)
debug("Found {} matches. Good matches are {}" . format(len(matches), len(good)))
matched_image = draw_matches(self.res_1['img'], self.res_1['kp'], self.res_2['img'], self.res_2['kp'], good)
save_image(matched_image, self.name, self.res_1['ext'])
self.results = {'pts_1': pts_1, 'pts_2': pts_2}
def join(self, timeout=None):
"""
Override del metodo di join del thread. Viene prima effettuato il join e poi ritornati
i risultati della computazione del metodo run.
:param timeout: eventuale timeout per il join.
:return: i risultati della computaziome.
"""
super(MatcherThread, self).join(timeout)
return self.results