Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

match climatic layers with their temporal dimension #713

Open
rociobeatrizc opened this issue Oct 5, 2024 · 5 comments
Open

match climatic layers with their temporal dimension #713

rociobeatrizc opened this issue Oct 5, 2024 · 5 comments

Comments

@rociobeatrizc
Copy link

rociobeatrizc commented Oct 5, 2024

Hello from Bologna, Italy! This is the first Issue I open on GitHub :)

I've been trying to solve a problem for days. I downloaded and imported 4 bioclimatic variables from CHELSA for 3 different months: January, February, and March. I created three stacks, one for each month, containing the variables. Here is how the files look:

> jan_stack
class       : SpatRaster 
dimensions  : 146, 212, 4  (nrow, ncol, nlyr)
resolution  : 0.008333333, 0.008333333  (x, y)
extent      : 13.01653, 14.78319, 41.68319, 42.89986  (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326) 
sources     : CHELSA_bio_01_1981-2010_V2.1_clipped.tif  
              CHELSA_bio_07_1981-2010_V2.1_clipped.tif  
              CHELSA_bio_13_1981-2010_V2.1_clipped.tif  
              CHELSA_bio_14_1981-2010_V2.1_clipped.tif  
names       : CHELSA_~10_V2.1, CHELSA_~10_V2.1, CHELSA_~10_V2.1, CHELSA_~10_V2.1 
min values  :           -0.95,            16.2,            59.8,            18.9 
max values  :           16.65,            29.5,           241.7,            92.8 

> feb_stack
class       : SpatRaster 
dimensions  : 146, 212, 4  (nrow, ncol, nlyr)
resolution  : 0.008333333, 0.008333333  (x, y)
extent      : 13.01653, 14.78319, 41.68319, 42.89986  (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326) 
sources     : CHELSA_bio_01_1981-2010_V2.1_clipped.tif  
              CHELSA_bio_07_1981-2010_V2.1_clipped.tif  
              CHELSA_bio_13_1981-2010_V2.1_clipped.tif  
              CHELSA_bio_14_1981-2010_V2.1_clipped.tif  
names       : CHELSA_~10_V2.1, CHELSA_~10_V2.1, CHELSA_~10_V2.1, CHELSA_~10_V2.1 
min values  :           -0.95,            16.2,            59.8,            18.9 
max values  :           16.65,            29.5,           241.7,            92.8 

> mar_stack
class       : SpatRaster 
dimensions  : 146, 212, 4  (nrow, ncol, nlyr)
resolution  : 0.008333333, 0.008333333  (x, y)
extent      : 13.01653, 14.78319, 41.68319, 42.89986  (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326) 
sources     : CHELSA_bio_01_1981-2010_V2.1_clipped.tif  
              CHELSA_bio_07_1981-2010_V2.1_clipped.tif  
              CHELSA_bio_13_1981-2010_V2.1_clipped.tif  
              CHELSA_bio_14_1981-2010_V2.1_clipped.tif  
names       : CHELSA_~10_V2.1, CHELSA_~10_V2.1, CHELSA_~10_V2.1, CHELSA_~10_V2.1 
min values  :           -0.95,            16.2,            59.8,            18.9 
max values  :           16.65,            29.5,           241.7,            92.

My goal is to create data cubes, so I need to add the temporal dimension. In this case, since these are climate series, each layer represents a monthly average over a 30-year period. Therefore, I thought of simply assigning a representative date of the month to each stack.

But if I proceed to create a 'stars' object, I get an object with a single attribute and three dimensions.

> jan_stars <- st_as_stars(jan_stack)
> jan_stars
stars object with 3 dimensions and 1 attribute
attribute(s):
                                 Min. 1st Qu. Median     Mean 3rd Qu.  Max.
CHELSA_bio_01_1981-2010_V2....  -0.95   16.55   28.1 50.30252    71.1 241.7
dimension(s):
           from  to offset     delta refsys point                                                        values x/y
x             1 212  13.02  0.008333 WGS 84 FALSE                                                          NULL [x]
y             1 146   42.9 -0.008333 WGS 84 FALSE                                                          NULL [y]
attributes    1   4     NA        NA     NA    NA CHELSA_bio_01_1981-2010_V2.1,...,CHELSA_bio_14_1981-2010_V2.1

'split' option

At this point, I tried to convert the 'attributes' dimension into separate attributes using 'split', but I lost one dimension and couldn't find any way to add it back while keeping the four attributes in place.

> split(jan_stars)
stars object with 2 dimensions and 4 attributes
attribute(s):
                               Min. 1st Qu. Median      Mean 3rd Qu.   Max.
CHELSA_bio_01_1981-2010_V2.1  -0.95    9.35  12.35  12.03118   15.45  16.65
CHELSA_bio_07_1981-2010_V2.1  16.20   25.30  27.20  25.69690   27.80  29.50
CHELSA_bio_13_1981-2010_V2.1  59.80   84.90 111.20 119.10602  147.40 241.70
CHELSA_bio_14_1981-2010_V2.1  18.90   33.20  43.90  44.37600   53.60  92.80
dimension(s):
  from  to offset     delta refsys point x/y
x    1 212  13.02  0.008333 WGS 84 FALSE [x]
y    1 146   42.9 -0.008333 WGS 84 FALSE [y]

manually add date

However, if I manually add the date, I'm left with only one attribute and I can no longer recover the other three. I need to keep this information as it will be needed for creating an SDM.

# Random January date
my_date <- as.Date("2009-01-01")

# Since I have 4 bands, I repeated the same date
repeated_dates <- rep(my_date, 4)

jan_time <- stars::st_set_dimensions(jan_stars,
      3,
      values = repeated_dates,
      names = "date")
jan_time

stars object with 3 dimensions and 1 attribute
attribute(s):
                                 Min. 1st Qu. Median     Mean 3rd Qu.  Max.
CHELSA_bio_01_1981-2010_V2....  -0.95   16.55   28.1 50.30252    71.1 241.7
dimension(s):
     from  to offset     delta refsys point                    values x/y
x       1 212  13.02  0.008333 WGS 84 FALSE                      NULL [x]
y       1 146   42.9 -0.008333 WGS 84 FALSE                      NULL [y]
date    1   4     NA        NA   Date    NA 2009-01-01,...,2009-01-01 

I have the impression that the solution is simple, but I just can't seem to find it. I really hope for some help. Thank you so much in advance!

@edzer
Copy link
Member

edzer commented Oct 7, 2024

Since you closed the issue, did you solve it?

@rociobeatrizc
Copy link
Author

Good evening.
Yes, it was a very silly problem. I couldn't set the time dimension correctly, but it was just a matter of adding the dates.
The initial situation, when I converted the raster stack into a stars object, was the following:

> jan_stars
stars object with 3 dimensions and 1 attribute
attribute(s):
                                 Min. 1st Qu. Median     Mean 3rd Qu.  Max.
CHELSA_bio_01_1981-2010_V2....  -0.95   16.55   28.1 50.30252    71.1 241.7
dimension(s):
           from  to offset     delta refsys point                                                        values x/y
x             1 212  13.02  0.008333 WGS 84 FALSE                                                          NULL [x]
y             1 146   42.9 -0.008333 WGS 84 FALSE                                                          NULL [y]
attributes    1   4     NA        NA     NA    NA CHELSA_bio_01_1981-2010_V2.1,...,CHELSA_bio_14_1981-2010_V2.1 

To add the temporal dimension (the same date for each attribute, which are 4) I followed the following steps, which are probably a bit 'rough' but work

# list with the stars object repeated 4 times
l = vector("list", 4)
l[] = list(jan_stars)

# temporary names
names(l) = c("w", "x", "y", "z")

# apply the list of names will result in another dimension: now we have 4 dimensions and 1 attribute
r = do.call("c", l)                                                                                                        
r = st_redimension(r)
> r
stars object with 4 dimensions and 1 attribute
attribute(s):
          Min. 1st Qu. Median     Mean 3rd Qu.  Max.
w.x.y.z  -0.95   16.55   28.1 50.30252    71.1 241.7
dimension(s):
           from  to offset     delta refsys point                                                        values x/y
x             1 212  13.02  0.008333 WGS 84 FALSE                                                          NULL [x]
y             1 146   42.9 -0.008333 WGS 84 FALSE                                                          NULL [y]
attributes    1   4     NA        NA     NA    NA CHELSA_bio_01_1981-2010_V2.1,...,CHELSA_bio_14_1981-2010_V2.1    
new_dim       1   4     NA        NA     NA    NA                                                       w,...,z    

# with split, the third dimension, which actually contains the bioclimatic variables, is turned into attributes
> r = split(r, 3)
> r
stars object with 3 dimensions and 4 attributes
attribute(s):
                               Min. 1st Qu. Median      Mean 3rd Qu.   Max.
CHELSA_bio_01_1981-2010_V2.1  -0.95    9.35  12.35  12.03118   15.45  16.65
CHELSA_bio_07_1981-2010_V2.1  16.20   25.30  27.20  25.69690   27.80  29.50
CHELSA_bio_13_1981-2010_V2.1  59.80   84.90 111.20 119.10602  147.40 241.70
CHELSA_bio_14_1981-2010_V2.1  18.90   33.20  43.90  44.37600   53.60  92.80
dimension(s):
        from  to offset     delta refsys point  values x/y
x          1 212  13.02  0.008333 WGS 84 FALSE    NULL [x]
y          1 146   42.9 -0.008333 WGS 84 FALSE    NULL [y]
new_dim    1   4     NA        NA     NA    NA w,...,z    

# Finally, let's replace the new_dim with the temporal dimension                                                                                                                                                                                               
r <- st_set_dimensions(.x = r, which = "new_dim", values = as.Date(c("2009-01-01", "2009-01-01", "2009-01-01","2009-01-01")), names = "time")
> r
stars object with 3 dimensions and 4 attributes
attribute(s):
                               Min. 1st Qu. Median      Mean 3rd Qu.   Max.
CHELSA_bio_01_1981-2010_V2.1  -0.95    9.35  12.35  12.03118   15.45  16.65
CHELSA_bio_07_1981-2010_V2.1  16.20   25.30  27.20  25.69690   27.80  29.50
CHELSA_bio_13_1981-2010_V2.1  59.80   84.90 111.20 119.10602  147.40 241.70
CHELSA_bio_14_1981-2010_V2.1  18.90   33.20  43.90  44.37600   53.60  92.80
dimension(s):
     from  to offset     delta refsys point                    values x/y
x       1 212  13.02  0.008333 WGS 84 FALSE                      NULL [x]
y       1 146   42.9 -0.008333 WGS 84 FALSE                      NULL [y]
time    1   4     NA        NA   Date    NA 2009-01-01,...,2009-01-01

I apologize if I improperly opened an issue on GitHub with this problem!

@edzer
Copy link
Member

edzer commented Oct 7, 2024

Thanks for the clarification!

@rociobeatrizc rociobeatrizc reopened this Oct 10, 2024
@rociobeatrizc
Copy link
Author

rociobeatrizc commented Oct 10, 2024

Good evening, I'm reopening the issue because, although the method I wrote above seems to work formally, when I try to select a date, I cannot retrieve the corresponding image. So, I think I might have incorrectly set the temporal dimension. I'll start from the beginning:

I used this function to download three climatic variables (precipitation, temperature, and maximum temperature): for each of these variables, I downloaded the first 4 months of the year.

# devtools required
if(!require(devtools)) install.packages("devtools")
library(devtools)
devtools::install_github("HelgeJentsch/ClimDatDownloadR")
library(ClimDatDownloadR)

# shapefile and bounding box
aoi_abruzzo <- st_read("abruzzo.shp") %>% .$geometry 

# Bounding Box 
abruzzo_bb <- st_bbox(aoi_abruzzo)

WorldClim.HistClim.download(
  # save.location = "./",
  parameter = c("prec", "temp", "tmax"),
  
  # 4 months, from jan to april
  month.var = c(1:4),

  # here, 10 arc-minutes are chosen as resolution 
  resolution = c("10m"),
  version.var = c("2.1"),
  clipping = TRUE,
  clip.shapefile = aoi_abruzzo,
  clip.extent = abruzzo_bb,
  # buffer = 0,
  convert.files.to.asc = FALSE,
  stacking.data = TRUE,
  keep.raw.zip = FALSE,
  delete.raw.data = FALSE,
  save.bib.file = TRUE
)

As a result, I have 4 .tif files for each variable, each representing a month. This is, for example, the precipitation variable imported as a stack:

# Import raster
# String containing the names of raster files
rastlist <- list.files(path ="my/path/prec/WorldClim_2.1_prec_30s/clipped_2024-10-09_16-35-06", pattern = "wc2.1", full.names = TRUE)

# Using the list of names, all the files are imported into a single raster package
stack_prec <- stack(rastlist)
> stack_prec
class      : RasterStack 
dimensions : 145, 212, 30740, 4  (nrow, ncol, ncell, nlayers)
resolution : 0.008333333, 0.008333333  (x, y)
extent     : 13.01667, 14.78333, 41.68333, 42.89167  (xmin, xmax, ymin, ymax)
crs        : +proj=longlat +datum=WGS84 +no_defs 
names      : wc2.1_30s_prec_01, wc2.1_30s_prec_02, wc2.1_30s_prec_03, wc2.1_30s_prec_04 
min values :                37,                34,                35,                32 
max values :               102,                99,                84,               106 

I have 4 layers, each corresponding to a month. I would like to create a stars object where, by adding and associating the temporal dimension to each layer, I am able to extract the precipitation corresponding to that month using the date.

These are the steps I followed

# stars object
stars_prec <- st_as_stars(stack_prec)

> stars_prec
stars object with 3 dimensions and 1 attribute
attribute(s):
                   Min. 1st Qu. Median     Mean 3rd Qu. Max.  NA's
wc2.1_30s_prec_01    32      48     53 55.19539      60  106 24480
dimension(s):
     from  to offset     delta                       refsys                                  values x/y
x       1 212  13.02  0.008333 +proj=longlat +datum=WGS8...                                    NULL [x]
y       1 145  42.89 -0.008333 +proj=longlat +datum=WGS8...                                    NULL [y]
band    1   4     NA        NA                          NA wc2.1_30s_prec_01,...,wc2.1_30s_prec_04 

Already at this point, I can see that the problem is that it only considers the first month of precipitation (wc2.1_30s_prec_01) as an 'attribute' and does not include all 4 of them.

To add the temporal dimension, I tried the following, based on an answer here on Stack Overflow.

# add temporal dimension 
l = vector("list", 4)
l[] = list(stars_prec)
r = do.call("c", l) 
r = st_redimension(r)
# 4 random days of the 4 months
r <- st_set_dimensions(.x = r, which = "new_dim", values = as.Date(c("1980-01-01", "1980-02-01", "1980-03-01","1980-04-01")), names = "time") 
> r
stars object with 4 dimensions and 1 attribute
attribute(s):
                                Min. 1st Qu. Median     Mean 3rd Qu. Max.  NA's
wc2.1_30s_prec_01.wc2.1_30s...    32      48     53 55.19539      60  106 97920
dimension(s):
     from  to offset     delta                       refsys                                  values x/y
x       1 212  13.02  0.008333 +proj=longlat +datum=WGS8...                                    NULL [x]
y       1 145  42.89 -0.008333 +proj=longlat +datum=WGS8...                                    NULL [y]
band    1   4     NA        NA                           NA wc2.1_30s_prec_01,...,wc2.1_30s_prec_04    
time    1   4     NA        NA                         Date               1980-01-01,...,1980-04-01 

I set the temporal dimension, but the attribute still only includes the precipitation values for the first month.
If I apply the split function on the third dimension, I get this:

> split(r,3)
stars object with 3 dimensions and 4 attributes
attribute(s):
                   Min. 1st Qu. Median     Mean 3rd Qu. Max.  NA's
wc2.1_30s_prec_01    37      44     48 49.30158      51  102 24480
wc2.1_30s_prec_02    34      49     52 53.25581      56   99 24480
wc2.1_30s_prec_03    35      50     53 53.35853      56   84 24480
wc2.1_30s_prec_04    32      61     66 64.86564      70  106 24480
dimension(s):
     from  to offset     delta                       refsys                    values x/y
x       1 212  13.02  0.008333 +proj=longlat +datum=WGS8...                      NULL [x]
y       1 145  42.89 -0.008333 +proj=longlat +datum=WGS8...                      NULL [y]
time    1   4     NA        NA                         Date 1980-01-01,...,1980-04-01  

Each month becomes a separate attribute!
I don't know how to solve this problem; I feel like the solution is simple, but I've been stuck for days. I would like to obtain the classic data cube, like this. Many thanks in advance.

@rociobeatrizc rociobeatrizc changed the title Add temporal dimension without band dimension match climatic layers with their temporal dimension Oct 11, 2024
@edzer
Copy link
Member

edzer commented Nov 16, 2024

I can look into this if you provide a reproducible example.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

2 participants