This example demonstrates ways to integrate LLM models into a custom command line utility for use by developers both locally and in automation processes such as CICD pipelines.
This directory contains a sample cli implementation called devai, as well as a tutorial describing how to use it.
Execute commands in your terminal.
git clone https://github.com/GoogleCloudPlatform/genai-for-developers.git
cd genai-for-developers/devai-cli
Set GCP project and location.
export PROJECT_ID=YOUR-GCP-PROJECT
export LOCATION=us-central1
gcloud config set project $PROJECT_ID
Obtain GCP user access credentials via a web flow. CLI will use these credentials to authenticate and make API calls.
gcloud auth application-default login
Enable Vertex AI and Secrets Manager APIs in your GCP project.
gcloud services enable \
aiplatform.googleapis.com \
cloudaicompanion.googleapis.com \
cloudresourcemanager.googleapis.com \
secretmanager.googleapis.com
To start, setup your virtualenv, install requirements and run the sample command
python3 -m venv venv
. venv/bin/activate
pip install -r src/requirements.txt
To create an installable CLI from the source, use setuptools to create the DEVAI cli with the following command from the project base folder.
pip install --editable ./src
Once installed you can use the CLI with its short name devai
as follows
devai review code -c ../sample-app/src/main/java
devai review performance -c ../sample-app/src/main/java
devai review security -c ../sample-app/src/main/java
devai review code -c ../sample-app/src/main/java/anthos/samples/bankofanthos/balancereader/BalanceReaderController.java
devai review testcoverage -c ../sample-app/src
devai document readme -c ../sample-app/src/main/
devai document update-readme -f ../sample-app/README.md -c ../sample-app/src/main/java/
devai document releasenotes -c ../sample-app/src/main/java
devai document update-releasenotes -f ../sample-app/releasenotes.md -c ../sample-app/src/main/java/ -t "v1.2.3"
devai review blockers -c ../sample-app/pom.xml
devai review blockers -c ../sample-app/setup.md
devai review impact \
--current ~/github/repo/service-v1.0.0/modules/login \
--target ~/github/repo/service-v2.0.0/modules/login
devai review imgdiff \
-c /ui/main-page-after-upgrade.png \
-t /ui/main-page-before-upgrade.png
devai review image \
-f "/tmp/diagram.png" \
-p "Review and summarize this diagram"
devai review video \
-f "/tmp/video.mp4" \
-p "Review and summarize this video"
devai release notes_user_tag -t "v5.0.0"
devai release notes_user -s "main" -e "feature-branch-name"
devai rag load -r "https://github.com/GoogleCloudPlatform/genai-for-developers"
devai rag query -q "What does devai do"
devai prompt with_context
devai prompt with_msg
devai prompt with_msg_streaming
To uninstall the package run the following command
python setup.py develop -u
To deactivate virtual env run the following command
deactivate
Run commands below to create service account and keys.
PROJECT_ID=$(gcloud config get-value project)
SERVICE_ACCOUNT_NAME='vertex-client'
DISPLAY_NAME='Vertex Client'
KEY_FILE_NAME='vertex-client-key'
gcloud iam service-accounts create $SERVICE_ACCOUNT_NAME --display-name "$DISPLAY_NAME"
gcloud projects add-iam-policy-binding $PROJECT_ID --member="serviceAccount:$SERVICE_ACCOUNT_NAME@$PROJECT_ID.iam.gserviceaccount.com" --role="roles/aiplatform.admin" --condition None
gcloud iam service-accounts keys create $KEY_FILE_NAME.json --iam-account=$SERVICE_ACCOUNT_NAME@$PROJECT_ID.iam.gserviceaccount.com
gcloud projects add-iam-policy-binding $PROJECT_ID --member="serviceAccount:$SERVICE_ACCOUNT_NAME@$PROJECT_ID.iam.gserviceaccount.com" --role="roles/secretmanager.secretAccessor" --condition None
Add following environment variables/secrets to your CICD pipeline.
If you have JIRA, GitLab and LangSmith integrations enabled, add additional env variables for respective systems, see details in sections below.
- GOOGLE_CLOUD_CREDENTIALS
- PROJECT_ID
- LOCATION
For GOOGLE_CLOUD_CREDENTIALS variable value, use service account key created in section above.
cat $KEY_FILE_NAME.json
DevAI CLI can be added in any build pipeline following the examples below:
- name: Code Review
run: echo '## Code Review Results 🚀' >> $GITHUB_STEP_SUMMARY
- run: echo "$(devai review code -c ${{ github.workspace }}/sample-app/src/main/java/anthos/samples/bankofanthos/balancereader)" >> $GITHUB_STEP_SUMMARY
shell: bash
build-job:
stage: build
script:
.
.
- devai review code -c ./sample-app/src/main/java/anthos/samples/bankofanthos/balancereader
- devai review performance -c ./sample-app/src/main/java/anthos/samples/bankofanthos/balancereader
- devai review security -c ./sample-app/src/main/java/anthos/samples/bankofanthos/balancereader
pipeline {
agent any
stages {
stage('build') {
steps {
dir("${env.WORKSPACE}/devai-cli") {
sh '''
python3 -m venv ./venv
. ./venv/bin/activate
./venv/bin/pip install -r src/requirements.txt
./venv/bin/pip install --editable ./src
'''
withCredentials([
file(credentialsId: 'GOOGLE_APPLICATION_CREDENTIALS', variable: 'GOOGLE_APPLICATION_CREDENTIALS'),
string(credentialsId: 'PROJECT_ID', variable: 'PROJECT_ID'),
string(credentialsId: 'LOCATION', variable: 'LOCATION'),
]) {
sh '''
./venv/bin/devai review code -c /bitnami/jenkins/home/workspace/genai-cicd_genai-for-developers/sample-app/src/main/java/anthos/samples/bankofanthos/balancereader
./venv/bin/devai review performance -c /bitnami/jenkins/home/workspace/genai-cicd_genai-for-developers/sample-app/src/main/java/anthos/samples/bankofanthos/balancereader
./venv/bin/devai review security -c /bitnami/jenkins/home/workspace/genai-cicd_genai-for-developers/sample-app/src/main/java/anthos/samples/bankofanthos/balancereader
'''
}
}
}
}
}
}
image: python:3.11-slim
pipelines:
default:
- step:
name: DevAI CLI
caches:
- pip
script:
- apt-get update && apt-get install -y git
.
.
- devai review code -c ./sample-app/src/main/java/anthos/samples/bankofanthos/balancereader
- devai review performance -c ./sample-app/src/main/java/anthos/samples/bankofanthos/balancereader
- devai review security -c ./sample-app/src/main/java/anthos/samples/bankofanthos/balancereader
version: 2.1
jobs:
ai-insights-code-review:
docker:
- image: python:3.11-slim
steps:
- checkout
- run:
command: |
.
.
devai review code -c ./sample-app/src/main/java/anthos/samples/bankofanthos/balancereader
There are multiple cloudbuild files included in order to facilitate local builds and tests as well as automated CICD for this repo.
First ensure you have an AR repo created to hold your image
gcloud artifacts repositories describe app-image-repo --location=$LOCATION
To trigger a build in Cloud Build manually run the following command. This build file does not use the ${SHORT_SHA} tag as seen in the standard webhook model
gcloud builds submit . --config=build/cloudbuild-local.yaml \
--substitutions=_ARTIFACT_REGISTRY_REPO=app-image-repo
To test the CLI as it would be used in a typical pipeline, run the following command.
gcloud builds submit . --config=build/cloudbuild-pipeline-test.yaml
To work with the CLI inside the container, build it locally and run it with your .config folder mounted to provide access to gcloud credentials
docker build -t devai-img .
docker run -it -v ~/.config:/root/.config devai-img
Once in the container run commands against the cli
devai echo
To publish manually
- Update version number in setup.py
- Follow semantic versioning
- versioned in order as follows (
.devN, aN, bN, rcN, <no suffix>, .postN
)
- Retrieve a personal API key from https://pypi.org/manage/account/token/ to publish
- You will need rights to publish to the pypi project
- Run the commands below an supply your API key when prompted
pip install build twine
rm -rf src/dist
rm -rf src/devai_cli.egg-info
python3 -m build src/
python3 -m twine upload src/dist/* --verbose
The cli is provided as a package on PyPi for demonstration purposes only. It is not intended for production use as is. To install the package for use locally or in CICD systems run the following command
Set environment variables in your local environment or in CICD pipeline environment variables.
export PROJECT_ID=YOUR_GCP_PROJECT_ID
export LOCATION=us-central1
Install cli:
pip install devai-cli
Install specific version:
pip install devai-cli==0.0.0a1
Test cli:
devai echo
Create JIRA API token for your project.
https://id.atlassian.com/manage-profile/security/api-tokens
Set environment variables required for JIRA integration.
export JIRA_API_TOKEN=your-jira-api-token
export JIRA_USERNAME = "email that you used to register with JIRA"
export JIRA_INSTANCE_URL = "https://YOUR-PROJECT.atlassian.net"
export JIRA_PROJECT_KEY = "JIRA project key"
Un-comment imports and function calls to use JIRA commands
- cli.py
- review.py
# Will return list of JIRA issues in specified JIRA project
devai jira list -c YOUR_JIRA_PROJECT_KEY
# Will create a new JIRA issue with provided details as is
devai jira create -c "New Feature request to implement Login Page.\nExample code block:\n {code}print(\"devai cli\"){code}"
# Will generate implementation and create a new JIRA issue with details
devai jira fix -c "write ring buffer implementation in Rust"
Create Project Access Token with following details:
- role: Maintainer
- selected scopes: api
https://gitlab.com/YOUR-USERID/YOUR-PROJECT/-/settings/access_tokens
Set environment variables required for GitLab integration.
export GITLAB_PERSONAL_ACCESS_TOKEN=your-gitlab-token
export GITLAB_URL="https://gitlab.com"
export GITLAB_REPOSITORY="USERID/REPOSITORY"
export GITLAB_BRANCH="devai"
export GITLAB_BASE_BRANCH="main"
Un-comment imports and function calls to use GitLab commands
- cli.py
- review.py
# Will create a new merge request with provided details
# Requires a branch to be created off main - manual step at this point
# export GITLAB_BRANCH="fix-branch"
devai gitlab create-pr -c "Details with file changes, docs, etc"
# Will create a new GitLab issue with provided details as is
devai gitlab fix-issue -c 4
# Will add a comment to GitLab issue
# issue name defaults to 'CICD AI Insights' for demonstration
devai gitlab create-comment -c "new comment content goes here"
# Will add a comment to GitLab issue with name 'CICD AI Insights'
devai gitlab create-comment -i "CICD AI Insights" -c "new comment content goes here"
Create an account and generate API key.
https://docs.smith.langchain.com/
Set environment variables required for LangSmith integration.
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_ENDPOINT="https://api.smith.langchain.com"
read -s LANGCHAIN_API_KEY
export LANGCHAIN_API_KEY