forked from RLado/STB-VMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_torchscript.py
106 lines (81 loc) · 3.59 KB
/
run_torchscript.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import argparse
import torch
from PIL import Image
from torchvision import transforms
import os
import time
import subprocess
def main(args):
# Load the TorchScript model
model = torch.jit.load('20x/modelpnnx20x.pt')
# Move the model to the device
if args.device == 'auto':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
device = args.device
print(f'Using device: {device}')
# Directory path of input frames
frames_dir = args.frames_dir
# Output directory path to save generated frames
output_dir = 'output_frames'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Resize the images if necessary
desired_size = (384, 384)
# Get the list of frames in the directory
frame_files = sorted(os.listdir(frames_dir))
# Count the number of frames
num_frames = len(frame_files)
# Process the frames and generate output images
start_time_frames = time.time()
for i in range(num_frames - 1):
# Load the frames
frame_a_path = os.path.join(frames_dir, frame_files[i])
frame_b_path = os.path.join(frames_dir, frame_files[i + 1])
image_a = Image.open(frame_a_path)
image_b = Image.open(frame_b_path)
# Resize the images
image_a = image_a.resize(desired_size)
image_b = image_b.resize(desired_size)
# Convert the images to tensors
transform = transforms.ToTensor()
tensor_a = transform(image_a)
tensor_b = transform(image_b)
# Move the tensors to the device
tensor_a = tensor_a.to(device)
tensor_b = tensor_b.to(device)
# Run inference
output_tuple = model(tensor_a.unsqueeze(0), tensor_b.unsqueeze(0))
output = output_tuple[0] # Access the desired tensor from the tuple
# Rescale the output tensor to the range [0, 1]
output = (output - output.min()) / (output.max() - output.min())
# Squeeze the tensor to remove the extra dimensions
output = output.squeeze()
# Convert the output tensor to a PIL image
output_image = transforms.ToPILImage()(output.cpu())
# Save the output image
output_path = os.path.join(output_dir, f'output_{i + 1:03d}.png')
output_image.save(output_path)
if (i + 1) % 10 == 0:
print(f'Processed {i + 1} frames out of {num_frames - 1}')
end_time_frames = time.time()
frames_time = end_time_frames - start_time_frames
print(f'Processing frames completed. Time taken: {frames_time:.2f} seconds')
# Use ffmpeg to create a 30 fps video
start_time_video = time.time()
output_video_path = os.path.join(output_dir, 'output_video.mp4')
subprocess.call(['ffmpeg', '-framerate', '30', '-i', os.path.join(output_dir, 'output_%03d.png'),
'-c:v', 'libx264', '-r', '30', '-pix_fmt', 'yuv420p', output_video_path])
end_time_video = time.time()
video_time = end_time_video - start_time_video
total_time = frames_time + video_time
print(f'Video created. Time taken: {video_time:.2f} seconds')
print(f'Total time elapsed: {total_time:.2f} seconds')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--frames_dir', type=str, required=True, help='Path to the input frames directory')
parser.add_argument('--device', type=str, default='auto',
choices=['auto', 'cpu', 'cuda', 'mps', 'xla', 'tpu', 'vulkan'],
help='select device [auto/cpu/cuda/mps/xla/tpu/vulkan] (default: auto)')
args = parser.parse_args()
main(args)