Skip to content

Latest commit

 

History

History
122 lines (88 loc) · 5.21 KB

plugin.md

File metadata and controls

122 lines (88 loc) · 5.21 KB

Plugins

Writing Plugins

The main method that gets called is ServeDNS. It has three parameters:

  • a context.Context;
  • dns.ResponseWriter that is, basically, the client's connection;
  • *dns.Msg the request from the client.

ServeDNS returns two values, a response code and an error. If the error is not nil CoreDNS, will return a SERVFAIL to the client. The response code tells CoreDNS if a reply has been written by the plugin chain or not. In the latter case CoreDNS will take care of that.

CoreDNS treats:

  • SERVFAIL (dns.RcodeServerFailure)
  • REFUSED (dns.RcodeRefused)
  • FORMERR (dns.RcodeFormatError)
  • NOTIMP (dns.RcodeNotImplemented)

as special and will then assume nothing has been written to the client. In all other cases it assumes something has been written to the client (by the plugin).

The example plugin shows a bare-bones implementation that can be used as a starting point for your plugin. This plugin has tests and extensive comments in the code.

Hooking It Up

See a couple of blog posts on how to write and add plugin to CoreDNS:

Logging

If your plugin needs to output a log line you should use the log package. CoreDNS does not implement log levels. The standard way of outputing is: log.Printf("[LEVEL] ..."), and LEVEL can be: INFO, WARNING or ERROR. In general, logging should be left to the higher layers by returning an error. However, if there is a reason to consume the error but notify the user, then logging in the plugin can be acceptable.

Metrics

When exporting metrics the Namespace should be plugin.Namespace (="coredns"), and the Subsystem should be the name of the plugin. The README.md for the plugin should then also contain a Metrics section detailing the metrics. If the plugin supports dynamic health reporting it should also have Health section detailing on some of its inner workings.

Documentation

Each plugin should have a README.md explaining what the plugin does and how it is configured. The file should have the following layout:

  • Title: use the plugin's name
  • Subsection titled: "Named" with PLUGIN - one line description.
  • Subsection titled: "Description" has a longer description.
  • Subsection titled: "Syntax", syntax and supported directives.
  • Subsection titled: "Examples"

More sections are of course possible.

Style

We use the Unix manual page style:

  • The name of plugin in the running text should be italic: plugin.
  • all CAPITAL: user supplied argument, in the running text references this use strong text: **: EXAMPLE.
  • Optional text: in block quotes: [optional].
  • Use three dots to indicate multiple options are allowed: arg....
  • Item used literal: literal.

Example Domain Names

Please be sure to use example.org or example.net in any examples and tests you provide. These are the standard domain names created for this purpose.

Fallthrough

In a perfect world the following would be true for plugin: "Either you are responsible for a zone or not". If the answer is "not", the plugin should call the next plugin in the chain. If "yes" it should handle all names that fall in this zone and the names below - i.e. it should handle the entire domain and all sub domains.

. {
    file example.org db.example
}

In this example the file plugin is handling all names below (and including) example.org. If a query comes in that is not a subdomain (or equal to) example.org the next plugin is called.

Now, the world isn't perfect, and there are good reasons to "fallthrough" to the next middlware, meaning a plugin is only responsible for a subset of names within the zone. The first of these to appear was the reverse plugin that synthesis PTR and A/AAAA responses (useful with IPv6).

The nature of the reverse plugin is such that it only deals with A,AAAA and PTR and then only for a subset of the names. Ideally you would want to layer reverse in front off another plugin such as file or auto (or even proxy). This means reverse handles some special reverse cases and all other request are handled by the backing plugin. This is exactly what "fallthrough" does. To keep things explicit we've opted that plugins implement such behavior should implement a fallthrough keyword.

The fallthrough directive should optionally accept a list of zones. Only queries for records in one of those zones should be allowed to fallthrough.

Qualifying for main repo

Plugins for CoreDNS can live out-of-tree, plugin.cfg defaults to CoreDNS' repo but other repos work just as well. So when do we consider the inclusion of a new plugin in the main repo?

  • First, the plugin should be useful for other people. "Useful" is a subjective term. We will probably need to further refine this.
  • It should be sufficiently different from other plugin to warrant inclusion.
  • Current internet standards need be supported: IPv4 and IPv6, so A and AAAA records should be handled (if your plugin is in the business of dealing with address records that is).
  • It must have tests.
  • It must have a README.md for documentation.