-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathdata_utils.py
938 lines (851 loc) · 40 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
import numpy as np
import pandas as pd
import pdb
import re
from time import time
import json
import random
import os
import model
import paths
from scipy.spatial.distance import pdist, squareform
from scipy.stats import multivariate_normal, invgamma, mode
from scipy.special import gamma
from scipy.misc import imresize
from functools import partial
from math import ceil
from sklearn.metrics.pairwise import rbf_kernel
from sklearn.preprocessing import MinMaxScaler
# --- to do with loading --- #
def get_samples_and_labels(settings):
"""
Parse settings options to load or generate correct type of data,
perform test/train split as necessary, and reform into 'samples' and 'labels'
dictionaries.
"""
if settings['data_load_from']:
data_path = './experiments/data/' + settings['data_load_from'] + '.data.npy'
print('Loading data from', data_path)
samples, pdf, labels = get_data('load', data_path)
train, vali, test = samples['train'], samples['vali'], samples['test']
train_labels, vali_labels, test_labels = labels['train'], labels['vali'], labels['test']
del samples, labels
elif settings['data'] == 'eICU_task':
# always load eICU
samples, pdf, labels = get_data('eICU_task', {})
# del samples, labels
train, vali, test = samples['train'], samples['vali'], samples['test']
train_labels, vali_labels, test_labels = labels['train'], labels['vali'], labels['test']
assert train_labels.shape[1] == settings['cond_dim']
# normalise to between -1, 1
train, vali, test = normalise_data(train, vali, test)
else:
# generate the data
data_vars = ['num_samples', 'seq_length', 'num_signals', 'freq_low',
'freq_high', 'amplitude_low', 'amplitude_high', 'scale',
'full_mnist']
data_settings = dict((k, settings[k]) for k in data_vars if k in settings.keys())
samples, pdf, labels = get_data(settings['data'], data_settings)
if 'multivariate_mnist' in settings and settings['multivariate_mnist']:
seq_length = samples.shape[1]
samples = samples.reshape(-1, int(np.sqrt(seq_length)), int(np.sqrt(seq_length)))
if 'normalise' in settings and settings['normalise']: # TODO this is a mess, fix
print(settings['normalise'])
norm = True
else:
norm = False
if labels is None:
train, vali, test = split(samples, [0.6, 0.2, 0.2], normalise=norm)
train_labels, vali_labels, test_labels = None, None, None
else:
train, vali, test, labels_list = split(samples, [0.6, 0.2, 0.2], normalise=norm, labels=labels)
train_labels, vali_labels, test_labels = labels_list
labels = dict()
labels['train'], labels['vali'], labels['test'] = train_labels, vali_labels, test_labels
samples = dict()
samples['train'], samples['vali'], samples['test'] = train, vali, test
# futz around with labels
# TODO refactor cause this is messy
if 'one_hot' in settings and settings['one_hot'] and not settings['data_load_from']:
if len(labels['train'].shape) == 1:
# ASSUME labels go from 0 to max_val inclusive, find max-val
max_val = int(np.max([labels['train'].max(), labels['test'].max(), labels['vali'].max()]))
# now we have max_val + 1 dimensions
print('Setting cond_dim to', max_val + 1, 'from', settings['cond_dim'])
settings['cond_dim'] = max_val + 1
print('Setting max_val to 1 from', settings['max_val'])
settings['max_val'] = 1
labels_oh = dict()
for (k, v) in labels.items():
A = np.zeros(shape=(len(v), settings['cond_dim']))
A[np.arange(len(v)), (v).astype(int)] = 1
labels_oh[k] = A
labels = labels_oh
else:
assert settings['max_val'] == 1
# this is already one-hot!
if 'predict_labels' in settings and settings['predict_labels']:
samples, labels = data_utils.make_predict_labels(samples, labels)
print('Setting cond_dim to 0 from', settings['cond_dim'])
settings['cond_dim'] = 0
# update the settings dictionary to update erroneous settings
# (mostly about the sequence length etc. - it gets set by the data!)
settings['seq_length'] = samples['train'].shape[1]
settings['num_samples'] = samples['train'].shape[0] + samples['vali'].shape[0] + samples['test'].shape[0]
settings['num_signals'] = samples['train'].shape[2]
settings['num_generated_features'] = samples['train'].shape[2]
return samples, pdf, labels
def get_data(data_type, data_options=None):
"""
Helper/wrapper function to get the requested data.
"""
labels = None
pdf = None
if data_type == 'load':
data_dict = np.load(data_options).item()
samples = data_dict['samples']
pdf = data_dict['pdf']
labels = data_dict['labels']
elif data_type == 'sine':
samples = sine_wave(**data_options)
elif data_type == 'mnist':
if data_options['full_mnist']:
samples, labels = mnist()
else:
#samples, labels = load_resized_mnist_0_5(14)
samples, labels = load_resized_mnist(14) # this is the 0-2 setting
elif data_type == 'gp_rbf':
print(data_options)
samples, pdf = GP(**data_options, kernel='rbf')
elif data_type == 'linear':
samples, pdf = linear(**data_options)
elif data_type == 'eICU_task':
samples, labels = eICU_task()
elif data_type == 'resampled_eICU':
samples, labels = resampled_eICU(**data_options)
else:
raise ValueError(data_type)
print('Generated/loaded', len(samples), 'samples from data-type', data_type)
return samples, pdf, labels
def get_batch(samples, batch_size, batch_idx, labels=None):
start_pos = batch_idx * batch_size
end_pos = start_pos + batch_size
if labels is None:
return samples[start_pos:end_pos], None
else:
if type(labels) == tuple: # two sets of labels
assert len(labels) == 2
return samples[start_pos:end_pos], labels[0][start_pos:end_pos], labels[1][start_pos:end_pos]
else:
assert type(labels) == np.ndarray
return samples[start_pos:end_pos], labels[start_pos:end_pos]
def normalise_data(train, vali, test, low=-1, high=1):
""" Apply some sort of whitening procedure
"""
# remember, data is num_samples x seq_length x signals
# whiten each signal - mean 0, std 1
mean = np.mean(np.vstack([train, vali]), axis=(0, 1))
std = np.std(np.vstack([train-mean, vali-mean]), axis=(0, 1))
normalised_train = (train - mean)/std
normalised_vali = (vali - mean)/std
normalised_test = (test - mean)/std
# normalised_data = data - np.nanmean(data, axis=(0, 1))
# normalised_data /= np.std(data, axis=(0, 1))
# # normalise samples to be between -1 and +1
# normalise just using train and vali
# min_val = np.nanmin(np.vstack([train, vali]), axis=(0, 1))
# max_val = np.nanmax(np.vstack([train, vali]), axis=(0, 1))
#
# normalised_train = (train - min_val)/(max_val - min_val)
# normalised_train = (high - low)*normalised_train + low
#
# normalised_vali = (vali - min_val)/(max_val - min_val)
# normalised_vali = (high - low)*normalised_vali + low
#
# normalised_test = (test - min_val)/(max_val - min_val)
# normalised_test = (high - low)*normalised_test + low
return normalised_train, normalised_vali, normalised_test
def scale_data(train, vali, test, scale_range=(-1, 1)):
signal_length = train.shape[1]
num_signals = train.shape[2]
# reshape everything
train_r = train.reshape(-1, signal_length*num_signals)
vali_r = vali.reshape(-1, signal_length*num_signals)
test_r = test.reshape(-1, signal_length*num_signals)
# fit scaler using train, vali
scaler = MinMaxScaler(feature_range=scale_range).fit(np.vstack([train_r, vali_r]))
# scale everything
scaled_train = scaler.transform(train_r).reshape(-1, signal_length, num_signals)
scaled_vali = scaler.transform(vali_r).reshape(-1, signal_length, num_signals)
scaled_test = scaler.transform(test_r).reshape(-1, signal_length, num_signals)
return scaled_train, scaled_vali, scaled_test
def split(samples, proportions, normalise=False, scale=False, labels=None, random_seed=None):
"""
Return train/validation/test split.
"""
if random_seed != None:
random.seed(random_seed)
np.random.seed(random_seed)
assert np.sum(proportions) == 1
n_total = samples.shape[0]
n_train = ceil(n_total*proportions[0])
n_test = ceil(n_total*proportions[2])
n_vali = n_total - (n_train + n_test)
# permutation to shuffle the samples
shuff = np.random.permutation(n_total)
train_indices = shuff[:n_train]
vali_indices = shuff[n_train:(n_train + n_vali)]
test_indices = shuff[(n_train + n_vali):]
# TODO when we want to scale we can just return the indices
assert len(set(train_indices).intersection(vali_indices)) == 0
assert len(set(train_indices).intersection(test_indices)) == 0
assert len(set(vali_indices).intersection(test_indices)) == 0
# split up the samples
train = samples[train_indices]
vali = samples[vali_indices]
test = samples[test_indices]
# apply the same normalisation scheme to all parts of the split
if normalise:
if scale: raise ValueError(normalise, scale) # mutually exclusive
train, vali, test = normalise_data(train, vali, test)
elif scale:
train, vali, test = scale_data(train, vali, test)
if labels is None:
return train, vali, test
else:
print('Splitting labels...')
if type(labels) == np.ndarray:
train_labels = labels[train_indices]
vali_labels = labels[vali_indices]
test_labels = labels[test_indices]
labels_split = [train_labels, vali_labels, test_labels]
elif type(labels) == dict:
# more than one set of labels! (weird case)
labels_split = dict()
for (label_name, label_set) in labels.items():
train_labels = label_set[train_indices]
vali_labels = label_set[vali_indices]
test_labels = label_set[test_indices]
labels_split[label_name] = [train_labels, vali_labels, test_labels]
else:
raise ValueError(type(labels))
return train, vali, test, labels_split
def make_predict_labels(samples, labels):
""" Given two dictionaries of samples, labels (already normalised, split etc)
append the labels on as additional signals in the data
"""
print('Appending label to samples')
assert not labels is None
if len(labels['train'].shape) > 1:
num_labels = labels['train'].shape[1]
else:
num_labels = 1
seq_length = samples['train'].shape[1]
num_signals = samples['train'].shape[2]
new_samples = dict()
new_labels = dict()
for (k, X) in samples.items():
num_samples = X.shape[0]
lab = labels[k]
# slow code because i am sick and don't want to try to be smart
new_X = np.zeros(shape=(num_samples, seq_length, num_signals + num_labels))
for row in range(num_samples):
new_X[row, :, :] = np.hstack([X[row, :, :], np.array(seq_length*[(2*lab[row]-1).reshape(num_labels)])])
new_samples[k] = new_X
new_labels[k] = None
return new_samples, new_labels
# --- specific data-types --- #
def eICU_task(predict_label=False):
"""
Load the eICU data for the extreme-value prediction task
"""
path = 'REDACTED'
data = np.load(path).item()
# convert it into similar format
labels = {'train': data['Y_train'], 'vali': data['Y_vali'], 'test': data['Y_test']}
samples = {'train': data['X_train'], 'vali': data['X_vali'], 'test': data['X_test']}
# reshape
for (k, X) in samples.items():
samples[k] = X.reshape(-1, 16, 4)
return samples, labels
def mnist(randomize=False):
""" Load and serialise """
try:
train = np.load('./data/mnist_train.npy')
print('Loaded mnist from .npy')
except IOError:
print('Failed to load MNIST data from .npy, loading from csv')
# read from the csv
train = np.loadtxt(open('./data/mnist_train.csv', 'r'), delimiter=',')
# scale samples from 0 to 1
train[:, 1:] /= 255
# scale from -1 to 1
train[:, 1:] = 2*train[:, 1:] - 1
# save to the npy
np.save('./data/mnist_train.npy', train)
# the first column is labels, kill them
labels = train[:, 0]
samples = train[:, 1:]
if randomize:
# not needed for GAN experiments...
print('Applying fixed permutation to mnist digits.')
fixed_permutation = np.random.permutation(28*28)
samples = train[:, fixed_permutation]
samples = samples.reshape(-1, 28*28, 1) # add redundant additional signals
return samples, labels
def load_resized_mnist_0_5(new_size, randomize=False):
""" Load resised mnist digits from 0 to 5 """
samples, labels = mnist()
print('Resizing...')
samples = samples[np.in1d(labels,[0,1,2,3,4,5])]
labels = labels[np.in1d(labels,[0,1,2,3,4,5])]
if new_size != 28:
resized_imgs = [imresize(img.reshape([28,28]), [new_size,new_size], interp='lanczos').ravel()[np.newaxis].T
for img in samples]
resized_imgs = np.array(resized_imgs)
resized_imgs = resized_imgs.astype(float)
resized_imgs /= 255.0
resized_imgs = 2*resized_imgs - 1
np.save('./data/resized_mnist_1_5_samples.npy', resized_imgs)
np.save('./data/resized_mnist_1_5_labels.npy', labels)
return resized_imgs, labels
else:
return samples, labels
def load_resized_mnist(new_size, from_to_digits=(0,2), randomize=False):
""" Load resised mnist digits from 0 to 5 """
samples, labels = mnist()
print('Resizing...')
samples = samples[np.in1d(labels,np.arange(from_to_digits[0], from_to_digits[1]+1))]
labels = labels[np.in1d(labels,np.arange(from_to_digits[0], from_to_digits[1]+1))]
if new_size != 28:
resized_imgs = [imresize(img.reshape([28,28]), [new_size,new_size], interp='lanczos').ravel()[np.newaxis].T
for img in samples]
resized_imgs = np.array(resized_imgs)
resized_imgs = resized_imgs.astype(float)
resized_imgs /= 255.0
resized_imgs = 2*resized_imgs - 1
np.save('./data/resized_mnist_'+ str(from_to_digits[0]) + '_' + str(from_to_digits[1]) + '_5_samples.npy', resized_imgs)
np.save('./data/resized_mnist_'+ str(from_to_digits[0]) + '_' + str(from_to_digits[1]) + '_labels.npy', labels)
return resized_imgs, labels
else:
return samples, labels
def resampled_eICU(seq_length=16, resample_rate_in_min=15,
variables=['sao2', 'heartrate', 'respiration', 'systemicmean'], **kwargs):
"""
Note: resampling rate is 15 minutes
"""
print('Getting resampled eICU data')
try:
data = np.load(paths.eICU_proc_dir + 'eICU_' + str(resample_rate_in_min) + '.npy').item()
samples = data['samples']
pids = data['pids']
print('Loaded from file!')
return samples, pids
except FileNotFoundError:
# in this case, we go into the main logic of the function
pass
resampled_data_path = paths.eICU_proc_dir + 'complete_resampled_pats_' + str(resample_rate_in_min) + 'min.csv'
resampled_pids_path = paths.eICU_proc_dir + 'cohort_complete_resampled_pats_' + str(resample_rate_in_min) + 'min.csv'
if not os.path.isfile(resampled_data_path):
generate_eICU_resampled_patients(resample_factor_in_min=resample_rate_in_min, upto_in_minutes=None)
get_cohort_of_complete_downsampled_patients(time_in_hours=1.5*resample_rate_in_min*seq_length, resample_factor_in_min=resample_rate_in_min)
pids = set(np.loadtxt(resampled_pids_path, dtype=int))
df = pd.read_csv(resampled_data_path)
# restrict to variables
df_restricted = df.loc[:, variables + ['offset', 'pid']]
# restrict to patients in the "good list"
df_restricted = df_restricted.where(df_restricted.pid.isin(pids)).dropna()
# assert no negative offsets
assert np.all(df_restricted.offset >= 0)
# restrict to 1.5 time the region length
# df_restricted = df_restricted.loc[np.all([df_restricted.offset <= 1.5*resample_rate_in_min*seq_length, df_restricted.offset >= 0], axis=0), :]
df_restricted = df_restricted.loc[df_restricted.offset <= 1.5*resample_rate_in_min*seq_length, :]
# for each patient, return the first seq_length observations
patient_starts = df_restricted.groupby('pid').head(seq_length)
n_pats_prefilter = len(set(patient_starts.pid))
# filter out patients who have fewer than seq_length observations
patient_starts = patient_starts.groupby('pid').filter(lambda x: x.pid.count() == seq_length)
n_pats_postfilter = len(set(patient_starts.pid))
print('Removed', n_pats_prefilter - n_pats_postfilter, 'patients with <', seq_length, 'observations in the first', 1.5*resample_rate_in_min*seq_length, 'minutes, leaving', n_pats_postfilter, 'patients remaining.')
# convert to samples - shape is [n_pats, seq_length, num_signals]
n_patients = n_pats_postfilter
num_signals = len(variables)
samples = np.empty(shape=(n_patients, seq_length, num_signals))
pats_grouped = patient_starts.groupby('pid')
pids = []
for (i, patient) in enumerate(pats_grouped.groups):
samples[i, :, :] = pats_grouped.get_group(patient).loc[:, variables].values
pids.append(patient)
assert i == n_patients - 1
assert np.mean(np.isnan(samples) == 0)
np.save(paths.eICU_proc_dir + 'eICU_' + str(resample_rate_in_min) + '.npy', {'samples': samples, 'pids': pids})
print('Saved to file!')
return samples, pids
def sine_wave(seq_length=30, num_samples=28*5*100, num_signals=1,
freq_low=1, freq_high=5, amplitude_low = 0.1, amplitude_high=0.9, **kwargs):
ix = np.arange(seq_length) + 1
samples = []
for i in range(num_samples):
signals = []
for i in range(num_signals):
f = np.random.uniform(low=freq_high, high=freq_low) # frequency
A = np.random.uniform(low=amplitude_high, high=amplitude_low) # amplitude
# offset
offset = np.random.uniform(low=-np.pi, high=np.pi)
signals.append(A*np.sin(2*np.pi*f*ix/float(seq_length) + offset))
samples.append(np.array(signals).T)
# the shape of the samples is num_samples x seq_length x num_signals
samples = np.array(samples)
return samples
def periodic_kernel(T, f=1.45/30, gamma=7.0, A=0.1):
"""
Calculates periodic kernel between all pairs of time points (there
should be seq_length of those), returns the Gram matrix.
f is frequency - higher means more peaks
gamma is a scale, smaller makes the covariance peaks shallower (smoother)
Heuristic for non-singular rbf:
periodic_kernel(np.arange(len), f=1.0/(0.79*len), A=1.0, gamma=len/4.0)
"""
dists = squareform(pdist(T.reshape(-1, 1)))
cov = A*np.exp(-gamma*(np.sin(2*np.pi*dists*f)**2))
return cov
def GP(seq_length=30, num_samples=28*5*100, num_signals=1, scale=0.1, kernel='rbf', **kwargs):
# the shape of the samples is num_samples x seq_length x num_signals
samples = np.empty(shape=(num_samples, seq_length, num_signals))
#T = np.arange(seq_length)/seq_length # note, between 0 and 1
T = np.arange(seq_length) # note, not between 0 and 1
if kernel == 'periodic':
cov = periodic_kernel(T)
elif kernel =='rbf':
cov = rbf_kernel(T.reshape(-1, 1), gamma=scale)
else:
raise NotImplementedError
# scale the covariance
cov *= 0.2
# define the distribution
mu = np.zeros(seq_length)
print(np.linalg.det(cov))
distribution = multivariate_normal(mean=np.zeros(cov.shape[0]), cov=cov)
pdf = distribution.logpdf
# now generate samples
for i in range(num_signals):
samples[:, :, i] = distribution.rvs(size=num_samples)
return samples, pdf
def linear_marginal_likelihood(Y, X, a0, b0, mu0, lambda0, log=True, **kwargs):
"""
Marginal likelihood for linear model.
See https://en.wikipedia.org/wiki/Bayesian_linear_regression pretty much
"""
seq_length = Y.shape[1] # note, y is just a line (one channel) TODO
n = seq_length
an = a0 + 0.5*n
XtX = np.dot(X.T, X)
lambdan = XtX + lambda0
prefactor = (2*np.pi)**(-0.5*n)
dets = np.sqrt(np.linalg.det(lambda0)/np.linalg.det(lambdan))
marginals = np.empty(Y.shape[0])
for (i, y) in enumerate(Y):
y_reshaped = y.reshape(seq_length)
betahat = np.dot(np.linalg.inv(XtX), np.dot(X.T, y_reshaped))
mun = np.dot(np.linalg.inv(lambdan), np.dot(XtX, betahat) + np.dot(lambda0, mu0))
bn = b0 + 0.5*(np.dot(y_reshaped.T, y_reshaped) + np.dot(np.dot(mu0.T, lambda0), mu0) - np.dot(np.dot(mun.T, lambdan), mun))
bs = (b0**a0)/(bn**an)
gammas = gamma(an)/gamma(a0)
marginals[i] = prefactor*dets*bs*gammas
if log:
marginals = np.log(marginals)
return marginals
def linear(seq_length=30, num_samples=28*5*100, a0=10, b0=0.01, k=2, **kwargs):
"""
Generate data from linear trend from probabilistic model.
The invgamma function in scipy corresponds to wiki defn. of inverse gamma:
scipy a = wiki alpha = a0
scipy scale = wiki beta = b0
k is the number of regression coefficients (just 2 here, slope and intercept)
"""
T = np.zeros(shape=(seq_length, 2))
T[:, 0] = np.arange(seq_length)
T[:, 1] = 1 # equivalent to X
lambda0 = 0.01*np.eye(k) # diagonal covariance for beta
y = np.zeros(shape=(num_samples, seq_length, 1))
sigmasq = invgamma.rvs(a=a0, scale=b0, size=num_samples)
increasing = np.random.choice([-1, 1], num_samples) # flip slope
for n in range(num_samples):
sigmasq_n = sigmasq[n]
offset = np.random.uniform(low=-0.5, high=0.5) # todo limits
mu0 = np.array([increasing[n]*(1.0-offset)/seq_length, offset])
beta = multivariate_normal.rvs(mean=mu0, cov=sigmasq_n*lambda0)
epsilon = np.random.normal(loc=0, scale=np.sqrt(sigmasq_n), size=seq_length)
y[n, :, :] = (np.dot(T, beta) + epsilon).reshape(seq_length, 1)
marginal = partial(linear_marginal_likelihood, X=T, a0=a0, b0=b0, mu0=mu0, lambda0=lambda0)
samples = y
pdf = marginal
return samples, pdf
def changepoint_pdf(Y, cov_ms, cov_Ms):
"""
"""
seq_length = Y.shape[0]
logpdf = []
for (i, m) in enumerate(range(int(seq_length/2), seq_length-1)):
Y_m = Y[:m, 0]
Y_M = Y[m:, 0]
M = seq_length - m
# generate mean function for second part
Ymin = np.min(Y_m)
initial_val = Y_m[-1]
if Ymin > 1:
final_val = (1.0 - M/seq_length)*Ymin
else:
final_val = (1.0 + M/seq_length)*Ymin
mu_M = np.linspace(initial_val, final_val, M)
# ah yeah
logpY_m = multivariate_normal.logpdf(Y_m, mean=np.zeros(m), cov=cov_ms[i])
logpY_M = multivariate_normal.logpdf(Y_M, mean=mu_M, cov=cov_Ms[i])
logpdf_m = logpY_m + logpY_M
logpdf.append(logpdf_m)
return logpdf
def changepoint_cristobal(seq_length=30, num_samples=28*5*100):
"""
Porting Cristobal's code for generating data with a changepoint.
"""
raise NotImplementedError
basal_values_signal_a = np.random.randn(n_samples) * 0.33
trends_seed_a = np.random.randn(n_samples) * 0.005
trends = np.array([i*trends_seed_a for i in range(51)[1:]]).T
signal_a = (basal_values_signal_a + trends.T).T
time_noise = np.random.randn(n_samples, n_steps) * 0.01
signal_a = time_noise + signal_a
basal_values_signal_b = np.random.randn(n_samples) * 0.33
trends_seed_b = np.random.randn(n_samples) * 0.005
trends = np.array([i*trends_seed_b for i in range(51)[1:]]).T
signal_b = (basal_values_signal_b + trends.T).T
time_noise = np.random.randn(n_samples, n_steps) * 0.01
signal_b = time_noise + signal_b
signal_a = np.clip(signal_a, -1, 1)
signal_b = np.clip(signal_b, -1, 1)
# the change in the trend is based on the top extreme values of each
# signal in the first half
time_steps_until_change = np.max(np.abs(signal_a), axis=1) + np.max(np.abs(signal_b), axis=1)*100
# noise added to the starting point
time_steps_until_change += np.random.randn(n_samples) * 5
time_steps_until_change = np.round(time_steps_until_change)
time_steps_until_change = np.clip(time_steps_until_change, 0, n_steps-1)
time_steps_until_change = n_steps - 1 - time_steps_until_change
trends = np.array([i*trends_seed_a for i in range(101)[51:]]).T
signal_a_target = (basal_values_signal_a + trends.T).T
time_noise = np.random.randn(n_samples, n_steps) * 0.01
signal_a_target = time_noise + signal_a_target
trends = np.array([i*trends_seed_b for i in range(101)[51:]]).T
signal_b_target = (basal_values_signal_b + trends.T).T
time_noise = np.random.randn(n_samples, n_steps) * 0.01
signal_b_target = time_noise + signal_b_target
signal_multipliers = []
for ts in time_steps_until_change:
signal_multiplier = []
if ts > 0:
for i in range(int(ts)):
signal_multiplier.append(1)
i += 1
else:
i = 0
multiplier = 1.25
while(i<n_steps):
signal_multiplier.append(multiplier)
multiplier += 0.25
i+=1
signal_multipliers.append(signal_multiplier)
signal_multipliers = np.array(signal_multipliers)
for s_idx, signal_choice in enumerate(basal_values_signal_b > basal_values_signal_a):
if signal_choice == False:
signal_a_target[s_idx] *= signal_multipliers[s_idx]
else:
signal_b_target[s_idx] *= signal_multipliers[s_idx]
signal_a_target = np.clip(signal_a_target, -1, 1)
signal_b_target = np.clip(signal_b_target, -1, 1)
# merging signals
signal_a = np.swapaxes(signal_a[np.newaxis].T, 0, 1)
signal_b = np.swapaxes(signal_b[np.newaxis].T, 0, 1)
signal_a_target = np.swapaxes(signal_a_target[np.newaxis].T, 0, 1)
signal_b_target = np.swapaxes(signal_b_target[np.newaxis].T, 0, 1)
input_seqs = np.dstack((signal_a,signal_b))
target_seqs = np.dstack((signal_a_target,signal_b_target))
return False
def changepoint(seq_length=30, num_samples=28*5*100):
"""
Generate data from two GPs, roughly speaking.
The first part (up to m) is as a normal GP.
The second part (m to end) has a linear downwards trend conditioned on the
first part.
"""
print('Generating samples from changepoint...')
T = np.arange(seq_length)
# sample breakpoint from latter half of sequence
m_s = np.random.choice(np.arange(int(seq_length/2), seq_length-1), size=num_samples)
samples = np.zeros(shape=(num_samples, seq_length, 1))
# kernel parameters and stuff
gamma=5.0/seq_length
A = 0.01
sigmasq = 0.8*A
lamb = 0.0 # if non-zero, cov_M risks not being positive semidefinite...
kernel = partial(rbf_kernel, gamma=gamma)
# multiple values per m
N_ms = []
cov_ms = []
cov_Ms = []
pdfs = []
for m in range(int(seq_length/2), seq_length-1):
# first part
M = seq_length - m
T_m = T[:m].reshape(m, 1)
cov_m = A*kernel(T_m.reshape(-1, 1), T_m.reshape(-1, 1))
cov_ms.append(cov_m)
# the second part
T_M = T[m:].reshape(M, 1)
cov_mM = kernel(T_M.reshape(-1, 1), T_m.reshape(-1, 1))
cov_M = sigmasq*(np.eye(M) - lamb*np.dot(np.dot(cov_mM, np.linalg.inv(cov_m)), cov_mM.T))
cov_Ms.append(cov_M)
for n in range(num_samples):
m = m_s[n]
M = seq_length-m
# sample the first m
cov_m = cov_ms[m - int(seq_length/2)]
Xm = multivariate_normal.rvs(cov=cov_m)
# generate mean function for second
Xmin = np.min(Xm)
initial_val = Xm[-1]
if Xmin > 1:
final_val = (1.0 - M/seq_length)*Xmin
else:
final_val = (1.0 + M/seq_length)*Xmin
mu_M = np.linspace(initial_val, final_val, M)
# sample the rest
cov_M = cov_Ms[m -int(seq_length/2)]
XM = multivariate_normal.rvs(mean=mu_M, cov=cov_M)
# combine the sequence
# NOTE: just one dimension
samples[n, :, 0] = np.concatenate([Xm, XM])
pdf = partial(changepoint_pdf, cov_ms=cov_ms, cov_Ms=cov_Ms)
return samples, pdf, m_s
def resample_eICU_patient(pid, resample_factor_in_min, variables, upto_in_minutes):
"""
Resample a *single* patient.
"""
pat_df = pd.read_hdf(paths.eICU_hdf_dir + '/vitalPeriodic.h5',
where='patientunitstayid = ' + str(pid),
columns=['observationoffset', 'patientunitstayid'] + variables,
mode='r')
# sometimes it's empty
if pat_df.empty:
return None
if not upto_in_minutes is None:
pat_df = pat_df.loc[0:upto_in_minutes*60]
# convert the offset to a TimedeltaIndex (necessary for resampling)
pat_df.observationoffset = pd.TimedeltaIndex(pat_df.observationoffset, unit='m')
pat_df.set_index('observationoffset', inplace=True)
pat_df.sort_index(inplace=True)
# resample by time
pat_df_resampled = pat_df.resample(str(resample_factor_in_min) + 'T').median() # pandas ignores NA in median by default
# rename pid, cast to int
pat_df_resampled.rename(columns={'patientunitstayid': 'pid'}, inplace=True)
pat_df_resampled['pid'] = np.int32(pat_df_resampled['pid'])
# get offsets in minutes from index
pat_df_resampled['offset'] = np.int32(pat_df_resampled.index.total_seconds()/60)
return pat_df_resampled
def generate_eICU_resampled_patients(resample_factor_in_min=15,
upto_in_minutes=None):
"""
Generates a dataframe with resampled patients. One sample every "resample_factor_in_min" minutes.
"""
pids = set(np.loadtxt(paths.eICU_proc_dir + 'pids.txt', dtype=int))
exclude_pids = set(np.loadtxt(paths.eICU_proc_dir + 'pids_missing_vitals.txt', dtype=int))
print('Excluding', len(exclude_pids), 'patients for not having vitals information')
pids = pids.difference(exclude_pids)
variables = ['sao2', 'heartrate', 'respiration', 'systemicmean']
num_pat = 0
num_miss = 0
f_miss = open(paths.eICU_proc_dir + 'pids_missing_vitals.txt', 'a')
for pid in pids: # have to go patient by patient
pat_df_resampled = resample_eICU_patient(pid, resample_factor_in_min, variables, upto_in_minutes)
if pat_df_resampled is None:
f_miss.write(str(pid) + '\n')
num_miss += 1
continue
else:
if num_pat == 0:
f = open(paths.eICU_proc_dir + 'resampled_pats' + str(resample_factor_in_min) +'min.csv', 'w')
pat_df_resampled.to_csv(f, header=True, index=False)
else:
pat_df_resampled.to_csv(f, header=False, index=False)
num_pat += 1
if num_pat % 100 == 0:
print(num_pat)
f.flush()
f_miss.flush()
print('Acquired data on', num_pat, 'patients.')
print('Skipped', num_miss, 'patients.')
return True
def get_cohort_of_complete_downsampled_patients(time_in_hours=4, resample_factor_in_min=15):
"""
Finds the set of patients that have no missing data during the first "time_in_hours".
"""
resampled_pats = pd.read_csv(paths.eICU_proc_dir + 'resampled_pats' + str(resample_factor_in_min) + 'min.csv')
time_in_minutes = time_in_hours * 60
# delete patients with any negative offset
print('Deleting patients with negative offsets...')
df_posoffset = resampled_pats.groupby('pid').filter(lambda x: np.all(x.offset >= 0))
# restrict time consideration
print('Restricting to offsets below', time_in_minutes)
df = df_posoffset.loc[df_posoffset.offset <= time_in_minutes]
#variables = ['sao2', 'heartrate', 'respiration', 'systemicmean']
variables = ['sao2', 'heartrate', 'respiration']
# patients with no missing values in those variables (this is slow)
print('Finding patients with no missing values in', ','.join(variables))
good_patients = df.groupby('pid').filter(lambda x: np.all(x.loc[:, variables].isnull().sum() == 0))
# extract the pids, save the cohort
cohort = good_patients.pid.drop_duplicates()
if cohort.shape[0] < 2:
print('ERROR: not enough patients in cohort.', cohort.shape[0])
return False
else:
print('Saving...')
cohort.to_csv(paths.eICU_proc_dir + 'cohort_complete_resampled_pats_' + str(resample_factor_in_min) + 'min.csv', header=False, index=False)
# save the full data (not just cohort)
good_patients.to_csv(paths.eICU_proc_dir + 'complete_resampled_pats_' + str(resample_factor_in_min) + 'min.csv', index=False)
return True
def get_eICU_with_targets(use_age=False, use_gender=False, save=False):
"""
Load resampled eICU data and get static prediction targets from demographics
(patients) file
"""
if use_age: print('Using age!')
if use_gender: print('Using gender!')
if save: print('Save!')
# load resampled eICU data (the labels are the patientunitstayids)
samples, pdf, labels = get_data('resampled_eICU', {})
# load patients static information
eICU_dir = 'REDACTED'
pat_dfs = pd.read_hdf(eICU_dir + '/patient.h5', mode='r')
# keep only static information of patients that are in the resampled table
pat_dfs = pat_dfs[pat_dfs.patientunitstayid.isin(labels)]
# reordering df to have the same order as samples and labels
pat_dfs.set_index('patientunitstayid', inplace=True)
pat_dfs.reindex(labels)
# target variables to keep. For now we don't use hospitaldischargeoffset since it is the only integer variable.
#target_vars = ['hospitaldischargeoffset', 'hospitaldischargestatus', 'apacheadmissiondx', 'hospitaldischargelocation', 'unittype', 'unitadmitsource']
real_vars = ['age']
binary_vars = ['hospitaldischargestatus', 'gender']
categorical_vars = ['apacheadmissiondx', 'hospitaldischargelocation', 'unittype', 'unitadmitsource']
target_vars = categorical_vars + ['hospitaldischargestatus']
if use_age: target_vars += ['age']
if use_gender: target_vars += ['gender']
targets_df = pat_dfs.loc[:, target_vars]
# remove patients by criteria
# missing data in any target
targets_df.dropna(how='any', inplace=True)
if use_age:
# age belonw 18 or above 89
targets_df = targets_df[targets_df.age != '> 89'] # yes, some ages are strings
targets_df.age = list(map(int, targets_df.age))
targets_df = targets_df[targets_df.age >= 18]
if use_gender:
# remove non-binary genders (sorry!)
targets_df['gender'] = targets_df['gender'].replace(['Female', 'Male', 'Other', 'Unknown'], [0, 1, -1, -1])
targets_df = targets_df[targets_df.gender >= 0]
# record patients to keep
keep_indices = [i for (i, pid) in enumerate(labels) if pid in targets_df.index]
assert len(keep_indices) == targets_df.shape[0]
new_samples = samples[keep_indices]
new_labels = np.array(labels)[keep_indices]
# triple check the labels are correct
assert np.array_equal(targets_df.index, new_labels)
# getn non-one-hot targets (strings)
targets = targets_df.values
# one hot encoding of categorical variables
dummies = pd.get_dummies(targets_df[categorical_vars], dummy_na=True)
targets_df_oh = pd.DataFrame()
targets_df_oh[dummies.columns] = dummies
# convert binary variables to one-hot, too
targets_df_oh['hospitaldischargestatus']= targets_df['hospitaldischargestatus'].replace(['Alive', 'Expired'],[1, 0])
if use_gender:
targets_df_oh['gender'] = targets_df['gender'] # already binarised
if use_age:
targets_df_oh['age'] = 2*targets_df['age']/89 - 1 # 89 is max
# drop dummy columns marking missing data (they should be empty)
nancols = [col for col in targets_df_oh.columns if col.endswith('nan')]
assert np.all(targets_df_oh[nancols].sum() == 0)
targets_df_oh.drop(nancols, axis=1, inplace=True)
targets_oh = targets_df_oh.values
if save:
# save!
# merge with training data, for LR saving
assert new_samples.shape[0] == targets_df_oh.shape[0]
flat_samples = new_samples.reshape(new_samples.shape[0], -1)
features_df = pd.DataFrame(flat_samples)
features_df.index = targets_df_oh.index
features_df.columns = ['feature_' + str(i) for i in range(features_df.shape[1])]
all_data = pd.concat([targets_df_oh, features_df], axis=1)
all_data.to_csv('./data/eICU_with_targets.csv')
# do the split
proportions = [0.6, 0.2, 0.2]
labels = {'targets': targets, 'targets_oh': targets_oh}
train_seqs, vali_seqs, test_seqs, labels_split = split(new_samples, proportions, scale=True, labels=labels)
train_targets, vali_targets, test_targets = labels_split['targets']
train_targets_oh, vali_targets_oh, test_targets_oh = labels_split['targets_oh']
return train_seqs, vali_seqs, test_seqs, train_targets, vali_targets, test_targets, train_targets_oh, vali_targets_oh, test_targets_oh
### --- TSTR ---- ####
def generate_synthetic(identifier, epoch, n_train, predict_labels=False):
"""
- Load a CGAN pretrained model
- Load its corresponding test data (+ labels)
- Generate num_examples synthetic training data (+labels)
- Save to format easy for training classifier on (see Eval)
"""
settings = json.load(open('./experiments/settings/' + identifier + '.txt', 'r'))
if not settings['cond_dim'] > 0:
assert settings['predict_labels']
assert predict_labels
# get the test data
print('Loading test (real) data for', identifier)
data_dict = np.load('./experiments/data/' + identifier + '.data.npy').item()
test_data = data_dict['samples']['test']
test_labels = data_dict['labels']['test']
train_data = data_dict['samples']['train']
train_labels = data_dict['labels']['train']
print('Loaded', test_data.shape[0], 'test examples')
print('Sampling', n_train, 'train examples from the model')
if not predict_labels:
assert test_data.shape[0] == test_labels.shape[0]
if 'eICU' in settings['data']:
synth_labels = train_labels[np.random.choice(train_labels.shape[0], n_train), :]
else:
# this doesn't really work for eICU...
synth_labels = model.sample_C(n_train, settings['cond_dim'], settings['max_val'], settings['one_hot'])
synth_data = model.sample_trained_model(settings, epoch, n_train, Z_samples=None, cond_dim=settings['cond_dim'], C_samples=synth_labels)
else:
assert settings['predict_labels']
synth_data = model.sample_trained_model(settings, epoch, n_train, Z_samples=None, cond_dim=0)
# extract the labels
if 'eICU' in settings['data']:
n_labels = 7
synth_labels = synth_data[:, :, -n_labels:]
train_labels = train_data[:, :, -n_labels:]
test_labels = test_data[:, :, -n_labels:]
else:
n_labels = 6 # mnist
synth_labels, _ = mode(np.argmax(synth_data[:, :, -n_labels:], axis=2), axis=1)
train_labels, _ = mode(np.argmax(train_data[:, :, -n_labels:], axis=2), axis=1)
test_labels, _ = mode(np.argmax(test_data[:, :, -n_labels:], axis=2), axis=1)
synth_data = synth_data[:, :, :-n_labels]
train_data = train_data[:, :, :-n_labels]
test_data = test_data[:, :, :-n_labels]
# package up, save
exp_data = dict()
exp_data['test_data'] = test_data
exp_data['test_labels'] = test_labels
exp_data['train_data'] = train_data
exp_data['train_labels'] = train_labels
exp_data['synth_data'] = synth_data
exp_data['synth_labels'] = synth_labels
# save it all up
np.save('./experiments/tstr/' + identifier + '_' + str(epoch) + '.data.npy', exp_data)
return True