-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathCropInvert.lua
38 lines (32 loc) · 1.14 KB
/
CropInvert.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
local CropInvert, parent = torch.class('nn.CropInvert', 'nn.Module')
function CropInvert:__init()
parent.__init(self)
end
function CropInvert:updateOutput(input)
self.output:resizeAs(input):fill(0)
for b = 1,input:size(1) do
self.output[{b,1,1}] = 1.0/input[{b,1,1}]
self.output[{b,2,2}] = 1.0/input[{b,2,2}]
self.output[{b,1,3}] = -input[{b,1,3}] / input[{b,1,1}]
self.output[{b,2,3}] = -input[{b,2,3}] / input[{b,2,2}]
end
return self.output
end
function CropInvert:updateGradInput(input, gradOutput)
self.gradInput = input:clone():fill(0)
for b = 1,input:size(1) do
local s_x = input[{b,1,1}]
local d_s_x = gradOutput[{b,1,1}]
local s_y = input[{b,2,2}]
local d_s_y = gradOutput[{b,2,2}]
local t_x = input[{b,1,3}]
local d_t_x = gradOutput[{b,1,3}]
local t_y = input[{b,2,3}]
local d_t_y = gradOutput[{b,2,3}]
self.gradInput[{b,1,1}] = -d_s_x/math.pow(s_x,2) + d_t_x*t_x/math.pow(s_x,2)
self.gradInput[{b,2,2}] = -d_s_y/math.pow(s_y,2) + d_t_y*t_y/math.pow(s_y,2)
self.gradInput[{b,1,3}] = d_t_x * (-1/s_x)
self.gradInput[{b,2,3}] = d_t_y * (-1/s_y)
end
return self.gradInput
end