-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathmain_mhp.lua
557 lines (518 loc) · 18.8 KB
/
main_mhp.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
--[[
Generic training script for MHP GAWWN keypoints,txt -> image.
--]]
require 'torch'
require 'nn'
require 'nngraph'
require 'optim'
require 'cudnn'
util = paths.dofile('util.lua')
opt = {
num_holdout = 1,
dropout = 0.8,
numCaption = 3,
activationG = '',
activationD = '',
txtSize = 1024,
fake_score_thresh = 0.1,
doc_length = 201,
trainfiles = '',
cls_weight = 0.5,
port = 8000,
dbg = 0,
num_elt = 16,
keypoint_dim = 16,
save_every = 10,
print_every = 1,
dataset = 'mhp',
img_dir = '',
filenames = '',
data_root = '/mnt/brain3/datasets/txt2img/mhp/t7files',
checkpoint_dir = '/home/reedscot/checkpoints',
batchSize = 64,
loadSize = 150,
nclass = 20, -- # of dim for raw text.
fineSize = 128,
nt = 128, -- # of dim for text features.
nz = 100, -- # of dim for Z
ngf = 128, -- # of gen filters in first conv layer
ndf = 64, -- # of discrim filters in first conv layer
nThreads = 4, -- # of data loading threads to use
niter = 1000, -- # of iter at starting learning rate
lr = 0.0002, -- initial learning rate for adam
lr_decay = 0.5, -- initial learning rate for adam
decay_every = 100,
beta1 = 0.5, -- momentum term of adam
ntrain = math.huge, -- # of examples per epoch. math.huge for full dataset
display = 1, -- display samples while training. 0 = false
display_id = 10, -- display window id.
gpu = 2, -- gpu = 0 is CPU mode. gpu=X is GPU mode on GPU X
name = 'vg',
noise = 'normal', -- uniform / normal
init_g = '',
init_d = '',
init_t = '',
use_cudnn = 1,
}
-- one-line argument parser. parses enviroment variables to override the defaults
for k,v in pairs(opt) do opt[k] = tonumber(os.getenv(k)) or os.getenv(k) or opt[k] end
print(opt)
if opt.display == 0 then opt.display = false end
if opt.display then
disp = require 'display'
disp.configure({hostname='0.0.0.0', port=opt.port})
end
assert(opt.keypoint_dim == 16 or opt.keypoint_dim == 8)
if opt.gpu > 0 then
ok, cunn = pcall(require, 'cunn')
ok2, cutorch = pcall(require, 'cutorch')
cutorch.setDevice(opt.gpu)
end
opt.manualSeed = torch.random(1, 10000) -- fix seed
print("Random Seed: " .. opt.manualSeed)
torch.manualSeed(opt.manualSeed)
torch.setnumthreads(1)
torch.setdefaulttensortype('torch.FloatTensor')
-- create data loader
local DataLoader = paths.dofile('data/data.lua')
local data = DataLoader.new(opt.nThreads, opt.dataset, opt)
print("Dataset: " .. opt.dataset, " Size: ", data:size())
----------------------------------------------------------------------------
local function weights_init(m)
local name = torch.type(m)
if name:find('Convolution') then
m.weight:normal(0.0, 0.02)
m.bias:fill(0)
elseif name:find('BatchNormalization') then
if m.weight then m.weight:normal(1.0, 0.02) end
if m.bias then m.bias:fill(0) end
end
end
local nc = 3
local nz = opt.nz
local ndf = opt.ndf
local ngf = opt.ngf
local real_label = 1
local fake_label = 0
local SpatialBatchNormalization = nn.SpatialBatchNormalization
local SpatialConvolution = nn.SpatialConvolution
local SpatialFullConvolution = nn.SpatialFullConvolution
local function activationG()
if opt.activationG == 'elu' then
return nn.ELU()
else
return nn.ReLU(true)
end
end
local function activationD()
if opt.activationD == 'elu' then
return nn.ELU()
else
return nn.LeakyReLU(0.2, true)
end
end
if opt.init_g == '' then
-- noise + txt encoder
prep_noise = nn.Sequential()
:add(nn.View(-1,opt.nz))
:add(nn.Linear(opt.nz, ngf*4))
prep_txt = nn.Sequential()
:add(nn.View(-1,opt.txtSize))
:add(nn.Linear(opt.txtSize, ngf*4))
noise_txt = nn.Sequential()
:add(nn.ParallelTable()
:add(prep_noise) -- ngf * 4
:add(prep_txt)) -- ngf * 4
:add(nn.JoinTable(2))
:add(activationG())
noise_txt_region = nn.Sequential()
:add(nn.ParallelTable()
:add(nn.Sequential()
:add(noise_txt) -- ngf * 8
:add(nn.Linear(ngf * 8, ngf * 4))
:add(nn.Replicate(opt.keypoint_dim,3))
:add(nn.Replicate(opt.keypoint_dim,4)))
:add(nn.Sequential() -- keypoints
:add(nn.Sum(2))
:add(nn.Clamp(0,1))
:add(nn.Replicate(ngf*4,2))))
:add(nn.CMulTable()) -- ngf * 4
:add(SpatialFullConvolution(ngf * 4, ngf * 4, 3, 3, 1, 1, 1, 1))
:add(SpatialBatchNormalization(ngf * 4)):add(activationG())
:add(nn.ConcatTable()
:add(nn.Sequential()
:add(SpatialConvolution(ngf * 4, ngf, 1, 1, 1, 1, 0, 0))
:add(SpatialBatchNormalization(ngf)):add(activationG())
:add(SpatialConvolution(ngf, ngf, 3, 3, 1, 1, 1, 1))
:add(SpatialBatchNormalization(ngf)):add(activationG())
:add(SpatialConvolution(ngf, ngf * 4, 3, 3, 1, 1, 1, 1))
:add(SpatialBatchNormalization(ngf * 4)))
:add(nn.Identity()))
:add(nn.CAddTable()):add(activationG())
prep_loc_global = nn.Sequential()
-- (opt.num_elt) x 16 x 16
:add(SpatialConvolution(opt.num_elt, ngf, 4, 4, 2, 2, 1, 1))
:add(SpatialBatchNormalization(ngf)):add(activationG())
-- (ngf) x 8 x 8
:add(SpatialConvolution(ngf, ngf*2, 4, 4, 2, 2, 1, 1))
:add(SpatialBatchNormalization(ngf*2)):add(activationG())
-- (ngf) x 4 x 4
:add(SpatialConvolution(ngf*2, ngf*4, 4, 4))
:add(SpatialBatchNormalization(ngf*4)):add(activationG())
:add(nn.View(-1,ngf*4))
noise_txt_global = nn.Sequential()
:add(nn.ParallelTable()
:add(nn.Sequential()
:add(noise_txt) -- ngf * 8
:add(nn.Linear(ngf * 8, ngf * 4))
:add(nn.BatchNormalization(ngf * 4)):add(activationG()))
:add(prep_loc_global)) -- ngf * 4
:add(nn.JoinTable(2))
:add(nn.View(-1, ngf*8, 1, 1))
-- 1 x 1
:add(SpatialFullConvolution(ngf * 8, ngf * 4, 4, 4))
:add(SpatialBatchNormalization(ngf * 4)):add(activationG())
-- 4 x 4
:add(SpatialFullConvolution(ngf * 4, ngf * 2, 4, 4, 2, 2, 1, 1))
:add(SpatialBatchNormalization(ngf * 2)):add(activationG())
-- 8 x 8
:add(SpatialFullConvolution(ngf * 2, ngf, 4, 4, 2, 2, 1, 1))
:add(SpatialBatchNormalization(ngf)):add(activationG())
-- 16 x 16
-- merge with keypoints
netG = nn.Sequential()
:add(nn.ConcatTable()
:add(noise_txt_global) -- ngf
:add(noise_txt_region) -- ngf * 4
:add(nn.SelectTable(2))) -- keypoints
:add(nn.JoinTable(2))
:add(nn.Contiguous())
-- state size: (ngf*4 + opt.num_elt) x 16 x 16
:add(SpatialFullConvolution(ngf * 5 + opt.num_elt, ngf * 4, 3, 3, 1, 1, 1, 1))
:add(SpatialBatchNormalization(ngf * 4)):add(activationG())
:add(SpatialFullConvolution(ngf * 4, ngf * 4, 3, 3, 1, 1, 1, 1))
:add(SpatialBatchNormalization(ngf * 4))
-- state size: (ngf*4) x 16 x 16
local conc = nn.ConcatTable()
local conv = nn.Sequential()
conv:add(SpatialConvolution(ngf * 4, ngf, 1, 1, 1, 1, 0, 0))
conv:add(SpatialBatchNormalization(ngf)):add(activationG())
conv:add(SpatialConvolution(ngf, ngf, 3, 3, 1, 1, 1, 1))
conv:add(SpatialBatchNormalization(ngf)):add(activationG())
conv:add(SpatialConvolution(ngf, ngf * 4, 3, 3, 1, 1, 1, 1))
conv:add(SpatialBatchNormalization(ngf * 4))
conc:add(nn.Identity())
conc:add(conv)
netG:add(conc)
if opt.fineSize == 128 then
netG:add(nn.CAddTable()):add(activationG())
-- state size: (ngf*4) x 16 x 16
:add(SpatialFullConvolution(ngf * 4, ngf * 2, 4, 4, 2, 2, 1, 1))
:add(SpatialBatchNormalization(ngf * 2)):add(activationG())
-- state size: (ngf * 2) x 32 x 32
:add(SpatialFullConvolution(ngf * 2, ngf, 4, 4, 2, 2, 1, 1))
:add(SpatialBatchNormalization(ngf)):add(activationG())
-- state size: (ngf) x 64 x 64
:add(SpatialFullConvolution(ngf, nc, 4, 4, 2, 2, 1, 1))
:add(nn.Tanh())
-- state size: (nc) x 128 x 128
elseif opt.fineSize == 64 then
netG:add(nn.CAddTable()):add(activationG())
-- state size: (ngf*4) x 16 x 16
:add(SpatialFullConvolution(ngf * 4, ngf * 2, 4, 4, 2, 2, 1, 1))
:add(SpatialBatchNormalization(ngf * 2)):add(activationG())
-- state size: (ngf * 2) x 32 x 32
:add(SpatialFullConvolution(ngf * 2, nc, 4, 4, 2, 2, 1, 1))
:add(nn.Tanh())
-- state size: (nc) x 64 x 64
else
assert(false)
end
netG:apply(weights_init)
else
netG = torch.load(opt.init_g)
end
if opt.init_d == '' then
-- netD expects {img, loc, txt}
if opt.fineSize == 128 then
imgGlobalD = nn.Sequential()
:add(nn.SelectTable(1))
-- state size: (nc) x 128 x 128
:add(SpatialConvolution(nc, ndf, 4, 4, 2, 2, 1, 1))
:add(activationD())
-- state size: (nc) x 64 x 64
:add(SpatialConvolution(ndf, ndf, 4, 4, 2, 2, 1, 1))
:add(activationD())
elseif opt.fineSize == 64 then
imgGlobalD = nn.Sequential()
:add(nn.SelectTable(1))
-- state size: (nc) x 64 x 64
:add(SpatialConvolution(nc, ndf, 4, 4, 2, 2, 1, 1))
:add(activationD())
else
assert(false)
end
imgGlobalD
-- state size: (ndf) x 32 x 32
:add(SpatialConvolution(ndf, ndf * 2, 4, 4, 2, 2, 1, 1))
:add(SpatialBatchNormalization(ndf * 2)):add(activationD())
-- state size: (ndf*2) x 16 x 16
:add(SpatialConvolution(ndf * 2, ndf * 2, 3, 3, 1, 1, 1, 1))
:add(SpatialBatchNormalization(ndf * 2)):add(activationD())
-- state size: (ndf*2) x 16 x 16
prep_txt_d = nn.Sequential()
:add(nn.SelectTable(3))
:add(nn.Linear(opt.txtSize, opt.nt))
:add(activationD())
-- region pathway
imgTextGlobalD = nn.Sequential()
:add(nn.ConcatTable()
:add(imgGlobalD) -- ndf * 2
:add(nn.Sequential() -- text path
:add(prep_txt_d) -- opt.nt
:add(nn.Replicate(opt.keypoint_dim,3))
:add(nn.Replicate(opt.keypoint_dim,4))))
:add(nn.JoinTable(2))
:add(SpatialConvolution(ndf * 2 + opt.nt, ndf * 2, 3, 3, 1, 1, 1, 1))
:add(SpatialBatchNormalization(ndf * 2)):add(activationD())
keyMulD = nn.Sequential()
:add(nn.ConcatTable() -- keypoint multiplication
:add(imgTextGlobalD)
:add(nn.Sequential() -- keypoints
:add(nn.SelectTable(2))
:add(nn.Sum(2))
:add(nn.Clamp(0,1))
:add(nn.Replicate(ndf * 2, 2))))
:add(nn.CMulTable())
regionD = nn.Sequential()
:add(nn.ConcatTable()
:add(keyMulD) -- (ndf*2) features with keypoint attention
:add(nn.SelectTable(2))) -- (opt.num_elt) keypoints
:add(nn.JoinTable(2)) -- keypoint concatenation
:add(nn.Contiguous())
-- state size: (ndf*2) x 16 x 16
:add(SpatialConvolution(ndf * 2 + opt.num_elt, ndf * 2, 1, 1))
:add(SpatialBatchNormalization(ndf * 2)):add(activationD())
-- state size: (ndf*2) x 16 x 16
:add(SpatialConvolution(ndf * 2, ndf, 1, 1))
-- state size: (ndf) x 16 x 16
:add(nn.Mean(4))
:add(nn.Mean(3))
:add(activationD())
-- global pathway
-- state size: (ndf*2) x 16 x 16
convGlobalD = nn.Sequential()
:add(imgGlobalD)
-- (ndf*2) x 16 x 16
:add(SpatialConvolution(ndf * 2, ndf * 4, 4, 4, 2, 2, 1, 1))
:add(SpatialBatchNormalization(ndf * 4)):add(activationD())
-- (ndf*4) x 8 x 8
:add(SpatialConvolution(ndf * 4, ndf * 8, 4, 4, 2, 2, 1, 1))
:add(SpatialBatchNormalization(ndf * 8)):add(activationD()) -- now 4x4
-- (ndf*8) x 4 x 4
txtGlobalD = nn.Sequential()
:add(prep_txt_d)
:add(nn.Replicate(4,3))
:add(nn.Replicate(4,4))
globalD = nn.Sequential()
:add(nn.ConcatTable()
:add(convGlobalD)
:add(txtGlobalD))
:add(nn.JoinTable(2))
:add(nn.Contiguous())
-- state size: (ndf*8 + opt.nt) x 4 x 4
:add(SpatialConvolution(ndf * 8 + opt.nt, ndf * 4, 1, 1))
:add(SpatialBatchNormalization(ndf * 4))
:add(activationD())
-- state size: (ndf*4) x 4 x 4
:add(SpatialConvolution(ndf * 4, ndf, 4, 4, 1, 1))
:add(SpatialBatchNormalization(ndf)):add(activationD())
-- state size: (ndf) x 1 x 1
:add(nn.View(-1,ndf))
:add(nn.Dropout(opt.dropout))
netD = nn.Sequential()
:add(nn.ConcatTable()
:add(regionD)
:add(globalD))
:add(nn.JoinTable(2))
:add(nn.Linear(ndf * 2, ndf))
:add(nn.BatchNormalization(ndf)):add(activationD())
:add(nn.Linear(ndf, 1))
:add(nn.Sigmoid())
netD:apply(weights_init)
else
netD = torch.load(opt.init_d)
end
netT = torch.load(opt.init_t)
local criterion = nn.BCECriterion()
---------------------------------------------------------------------------
optimStateG = {
learningRate = opt.lr,
beta1 = opt.beta1,
}
optimStateD = {
learningRate = opt.lr,
beta1 = opt.beta1,
}
local alphabet = "abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'\"/\\|_@#$%^&*~`+-=<>()[]{} "
local dict = {}
for i = 1,#alphabet do
dict[alphabet:sub(i,i)] = i
end
ivocab = {}
for k,v in pairs(dict) do
ivocab[v] = k
end
alphabet_size = #alphabet
----------------------------------------------------------------------------
local input_img = torch.zeros(opt.batchSize, 3, opt.fineSize, opt.fineSize)
local input_fake = torch.zeros(opt.batchSize, 3, opt.fineSize, opt.fineSize)
local input_loc = torch.zeros(opt.batchSize, opt.num_elt, opt.keypoint_dim, opt.keypoint_dim)
local input_txt = torch.Tensor(opt.batchSize, opt.txtSize)
local input_txt_shuf = torch.Tensor(opt.batchSize, opt.txtSize)
local noise = torch.zeros(opt.batchSize, nz)
local label = torch.zeros(opt.batchSize)
local errD, errG
----------------------------------------------------------------------------
local epoch_tm = torch.Timer()
local tm = torch.Timer()
local data_tm = torch.Timer()
----------------------------------------------------------------------------
if opt.gpu > 0 then
input_img = input_img:cuda()
input_txt = input_txt:cuda()
input_txt_shuf = input_txt_shuf:cuda()
input_fake = input_fake:cuda()
input_loc = input_loc:cuda()
noise = noise:cuda()
label = label:cuda()
netD:cuda()
netG:cuda()
netT:cuda()
criterion:cuda()
end
if (opt.gpu >= 0) and (opt.use_cudnn == 1) then
cudnn = require('cudnn')
netD = cudnn.convert(netD, cudnn)
netG = cudnn.convert(netG, cudnn)
netT = cudnn.convert(netT, cudnn)
end
local parametersD, gradParametersD = netD:getParameters()
local parametersG, gradParametersG = netG:getParameters()
if opt.display then disp = require 'display' end
local sample = function()
data_tm:reset(); data_tm:resume()
real_img, real_txt, real_loc, dbg, loc_raw = data:getBatch()
data_tm:stop()
input_img:copy(real_img)
input_txt:copy(real_txt)
input_loc:copy(real_loc)
local shuf_ix = torch.randperm(opt.batchSize)
for n = 1,input_txt:size(1) do
input_txt_shuf[n]:copy(input_txt[shuf_ix[n]])
end
end
-- create closure to evaluate f(X) and df/dX of discriminator
fake_score = 0.5
local fDx = function(x)
gradParametersD:zero()
-- train with real
label:fill(real_label)
local output = netD:forward{input_img, input_loc, input_txt}
errD_real = criterion:forward(output, label)
local df_do = criterion:backward(output, label)
local deltas = netD:backward({input_img, input_loc, input_txt}, df_do)
-- train with wrong
errD_wrong = 0
if opt.cls_weight > 0 then
-- train with wrong
label:fill(fake_label)
local output = netD:forward{input_img, input_loc, input_txt_shuf}
errD_wrong = opt.cls_weight*criterion:forward(output, label)
local df_do = criterion:backward(output, label)
df_do:mul(opt.cls_weight)
deltas = netD:backward({input_img, input_loc, input_txt_shuf}, df_do)
end
-- train with fake
if opt.noise == 'uniform' then -- regenerate random noise
noise:uniform(-1, 1)
elseif opt.noise == 'normal' then
noise:normal(0, 1)
end
label:fill(fake_label)
local fake = netG:forward({{noise, input_txt}, input_loc})
input_img:copy(fake)
local output = netD:forward{input_img, input_loc, input_txt}
-- update fake score tracker
local cur_score = output:mean()
fake_score = 0.99 * fake_score + 0.01 * cur_score
local errD_fake = criterion:forward(output, label)
local df_do = criterion:backward(output, label)
local fake_weight = 1 - opt.cls_weight
errD_fake = errD_fake*fake_weight
df_do:mul(fake_weight)
netD:backward({input_img, input_loc, input_txt}, df_do)
errD = errD_real + errD_fake + errD_wrong
return errD, gradParametersD
end
-- create closure to evaluate f(X) and df/dX of generator
local fGx = function(x)
gradParametersG:zero()
label:fill(real_label) -- fake labels are real for generator cost
local output = netD.output
local cur_score = output:mean()
fake_score = 0.99 * fake_score + 0.01 * cur_score
errG = criterion:forward(output, label)
local df_do = criterion:backward(output, label)
local df_dr = netD:updateGradInput({input_img, input_loc, input_txt}, df_do)
local deltas = netG:backward({{noise, input_txt}, input_loc}, df_dr[1])
return errG, gradParametersG
end
-- train
for epoch = 1, opt.niter do
epoch_tm:reset()
if epoch % opt.decay_every == 0 then
optimStateG.learningRate = optimStateG.learningRate * opt.lr_decay
optimStateD.learningRate = optimStateD.learningRate * opt.lr_decay
end
for i = 1, math.min(data:size(), opt.ntrain), opt.batchSize do
tm:reset()
sample()
if fake_score > opt.fake_score_thresh then
optim.adam(fDx, parametersD, optimStateD)
else
-- just do fDx, no update.
fDx(parametersD)
end
optim.adam(fGx, parametersG, optimStateG)
-- logging
if ((i-1) / opt.batchSize) % opt.print_every == 0 then
print(('[%d][%d/%d] T:%.3f DT:%.3f lr: %.4g '
.. ' G:%.3f D:%.3f fs:%.2f'):format(
epoch, ((i-1) / opt.batchSize),
math.floor(math.min(data:size(), opt.ntrain) / opt.batchSize),
tm:time().real, data_tm:time().real,
optimStateG.learningRate,
errG and errG or -1, errD and errD or -1,
fake_score))
local fake = netG.output
disp.image(fake:narrow(1,1,math.min(4,opt.batchSize)), {win=opt.display_id, title=opt.name})
local vis_real = real_img:narrow(1,1,math.min(4,opt.batchSize))
for b = 1,vis_real:size(1) do
vis_real[b] = util.draw_keypoints(vis_real[b], loc_raw[b])
end
disp.image(vis_real, {win=opt.display_id * 3, title=opt.name})
local tmp = input_loc:clone():max(2)
tmp = torch.repeatTensor(tmp, 1, 3, 1, 1)
disp.image(tmp:narrow(1,1,math.min(4,opt.batchSize)), {win=opt.display_id * 7, title=opt.name})
end
end
if epoch % opt.save_every == 0 then
paths.mkdir(opt.checkpoint_dir)
torch.save(opt.checkpoint_dir .. '/' .. opt.name .. '_' .. epoch .. '_net_G.t7', netG:clone():clearState())
torch.save(opt.checkpoint_dir .. '/' .. opt.name .. '_' .. epoch .. '_net_D.t7', netD:clone():clearState())
torch.save(opt.checkpoint_dir .. '/' .. opt.name .. '_' .. epoch .. '_opt.t7', opt)
print(('End of epoch %d / %d \t Time Taken: %.3f'):format(
epoch, opt.niter, epoch_tm:time().real))
end
end