forked from artxz/FAFB-photoreceptor-connectivity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayer_centraleye.R
265 lines (216 loc) · 10.7 KB
/
layer_centraleye.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# find Mi1's that identifies the seed columns -------------------------------------------
# - 4 col of 8 R7/8
pR78_me <- nlapply(c(pR7,pR8), function(x) subset(x, pointsinside(x, ME_msh))) #me portion
yR78_me <- nlapply(c(yR7,yR8), function(x) subset(x, pointsinside(x, ME_msh)))
R78_4col_me <- c(pR78_me, yR78_me) #combine all 8
R78_4col_me_xform <- xEucl_neu(R78_4col_me, me_pca$rotation, me_pca$center)
ref_com <- sapply(R78_4col_me_xform, function(x) colMeans(xyzmatrix(x$d)))
ref_com <- t(ref_com)
ref_com[,1] <- 0
# group into 4
hc <- hclust(dist(ref_com))
hc_ind <- cutree(hc, k=4)
ref_com4 <- matrix(ncol = 3, nrow = 4)
for (j in 1:4) {
xyz <- ref_com[hc_ind == j, ,drop=F]
ref_com4[j,] <- colMeans(xyz)
}
# - R7 p and y
R7_p_xform <- xEucl_neu(R7_p, me_pca$rotation, me_pca$center)
R7_y_xform <- xEucl_neu(R7_y, me_pca$rotation, me_pca$center)
# -- Mi1 M5 nodes
xyz_M5_avg_xform <- sweep(xyz_M5_avg, 2, me_pca$center) %*% me_pca$rotation
xyz_M5_avg_xform_yz <- xyz_M5_avg_xform
xyz_M5_avg_xform_yz[,1] <- 0
xyz_M5_avg_xform_yz_Nnb <- xyz_M5_avg_xform_yz[c(Mi1_ind_Nnb_p,Mi1_ind_Nnb_y), ] #neighbor columns
# DEBUG
# nopen3d()
# points3d(xyz_M5_avg_xform_yz, col='grey', size = 20)
# # points3d(ref_com4,col='red',size=10)
# points3d(xyz_M5_avg_xform_yz[Mi1_ind_p,], size=25, col='blue')
# points3d(xyz_M5_avg_xform_yz[Mi1_ind_y,], size=25, col='gold')
# plot3d(R7_p_xform, col='green', lwd=2)
# plot3d(R7_y_xform, col='gold2', lwd=2)
# transform and generate meshes in the new coord given me_pca -------------
# - make a medulla mesh
xyz <- t(ME_msh$vb[1:3,])
xyz <- sweep(xyz, 2, me_pca$center) %*% me_pca$rotation
ME_msh_xform <- ashape3d(xyz, alpha = 50000) %>% as.mesh3d()
# make new local mesh
xyz <- t(ME_msh_xform$vb[1:3,])
dd <- sweep(xyz[,2:3], 2, colMeans(xyz_M5_avg_xform_yz_Nnb)[-1]) %>% .^2 %>% rowSums() %>% sqrt()
xyz_msh <- xyz[dd < 1.2*max(dist(xyz_M5_avg_xform_yz_Nnb)), ]
ME_msh_local_large <- ashape3d(xyz_msh, alpha = 60000) %>% as.mesh3d()
# a smaller version
xyz <- t(ME_msh_xform$vb[1:3,])
dd <- sweep(xyz[,2:3], 2, colMeans(xyz_M5_avg_xform_yz_Nnb)[-1]) %>% .^2 %>% rowSums() %>% sqrt()
xyz_msh <- xyz[dd < 0.8*max(dist(xyz_M5_avg_xform_yz_Nnb)), ]
ME_msh_local <- ashape3d(xyz_msh, alpha = 60000) %>% as.mesh3d()
# - transfomr LO mesh
LO_msh_xform <- LO_msh
LO_msh_xform$vb[1:3,] <- sweep(t(LO_msh$vb[1:3,]), 2, me_pca$center) %*% me_pca$rotation %>% t()
# use Tm20 to make new local mesh
Tm20_LO <- nlapply(Tm20, subset, function(x) pointsinside(x, LO_msh))
Tm20_LO_xform <- xEucl_neu(Tm20_LO, me_pca$rotation, me_pca$center)
LO_pca <- prcomp(xyzmatrix(Tm20_LO))
# make local mesh
xyz <- sweep(t(LO_msh$vb[1:3,]), 2, LO_pca$center) %*% LO_pca$rotation
dd <- xyz[,2:3]^2 %>% rowSums() %>% sqrt() #distance to origin defined by Tm20
xyz <- sweep(t(LO_msh$vb[1:3,]), 2, me_pca$center) %*% me_pca$rotation
xyz_msh <- xyz[dd < 1.2*max(dist(xyz_M5_avg_xform_yz_Nnb)), ]
LO_msh_local_large <- ashape3d(xyz_msh, alpha = 50000) %>% as.mesh3d()
xyz <- sweep(t(LO_msh$vb[1:3,]), 2, me_pca$center) %*% me_pca$rotation
xyz_msh <- xyz[dd < 0.8*max(dist(xyz_M5_avg_xform_yz_Nnb)), ]
LO_msh_local <- ashape3d(xyz_msh, alpha = 50000) %>% as.mesh3d()
# - transfomr other mesh
AOTU_msh_xform <- AOTU_msh
AOTU_msh_xform$vb[1:3,] <- sweep(t(AOTU_msh$vb[1:3,]), 2, me_pca$center) %*% me_pca$rotation %>% t()
LOP_L_msh_xform <- LOP_L_msh
LOP_L_msh_xform$vb[1:3,] <- sweep(t(LOP_L_msh$vb[1:3,]), 2, me_pca$center) %*% me_pca$rotation %>% t()
FLA_R_msh_xform <- FLA_R_msh
FLA_R_msh_xform$vb[1:3,] <- sweep(t(FLA_R_msh$vb[1:3,]), 2, me_pca$center) %*% me_pca$rotation %>% t()
IPS_L_msh_xform <- IPS_L_msh
IPS_L_msh_xform$vb[1:3,] <- sweep(t(IPS_L_msh$vb[1:3,]), 2, me_pca$center) %*% me_pca$rotation %>% t()
IPS_R_msh_xform <- IPS_R_msh
IPS_R_msh_xform$vb[1:3,] <- sweep(t(IPS_R_msh$vb[1:3,]), 2, me_pca$center) %*% me_pca$rotation %>% t()
SPS_R_msh_xform <- SPS_R_msh
SPS_R_msh_xform$vb[1:3,] <- sweep(t(SPS_R_msh$vb[1:3,]), 2, me_pca$center) %*% me_pca$rotation %>% t()
PLP_R_msh_xform <- PLP_R_msh
PLP_R_msh_xform$vb[1:3,] <- sweep(t(PLP_R_msh$vb[1:3,]), 2, me_pca$center) %*% me_pca$rotation %>% t()
AME_R_msh_xform <- AME_R_msh
AME_R_msh_xform$vb[1:3,] <- sweep(t(AME_R_msh$vb[1:3,]), 2, me_pca$center) %*% me_pca$rotation %>% t()
# medulla layers ----------------------------------------------------------------
# first find boundaries of the neuropil, then draw layers in between them using 7-col paper and some known neurons
# - this transformation is related to later plots, such that the layers are mostly parallel to the plane of the plots
xAng <- -105 #rotation angle around x-axis
xAngRot <- (xAng - 90)/180*pi
xRot <- matrix(c(1,0,0,
0, cos(xAngRot), sin(xAngRot),
0, -sin(xAngRot), cos(xAngRot)), ncol = 3, byrow = T)
xyz <- t(ME_msh_local$vb[1:3,])
xz <- xyz %*% xRot %>% .[,c(1,3)]
xyz_chull <- cbind(xz[chull(xz),1], 0, xz[chull(xz),2])
# scale bar
sbar <- matrix(c(-60000,0,-40000, -60000,0,-30000), ncol=3,byrow=T) %*% t(xRot)
# - ME boundary
# fit a surface to the mesh boundary and them sample the fit in the desired positions
vbd <- xyz_chull %*% t(xRot)
yz <- data.frame(y = seq(min(vbd[,2]), max(vbd[,2]), length.out = 20),
z = seq(min(vbd[,3]), max(vbd[,3]), length.out = 20))
# points on mesh
xyz <- t(ME_msh_xform$vb[1:3,])
dd <- sweep(xyz[,2:3], 2, colMeans(xyz_M5_avg_xform_yz_Nnb)[-1]) %>% .^2 %>% rowSums() %>% sqrt()
xyz_msh <- xyz[dd < max(dist(xyz_M5_avg_xform_yz_Nnb)), ]
# top
xyz_top <- xyz_msh[xyz_msh[,1] > 0, ]
x <- xyz_top[,1]; y <- xyz_top[,2]; z <- xyz_top[,3]
fitlm <- lm(x ~ poly(y, z, degree = 2, raw = T))
valfit <- predict(fitlm, yz) #generate values from the fit
top_bd <- cbind(valfit, yz)
# bottom
xyz_bot <- xyz_msh[xyz_msh[,1] < 0, ]
x <- xyz_bot[,1]; y <- xyz_bot[,2]; z <- xyz_bot[,3]
fitlm <- lm(x ~ poly(y, z, degree = 2, raw = T))
valfit <- predict(fitlm, yz) #generate values from the fit
bot_bd <- cbind(valfit, yz)
# 2D mesh as outline
ME_msh_local_bd <- rbind(top_bd, apply(bot_bd, MARGIN = 2, rev))
ME_msh_local_bd <- rbind(ME_msh_local_bd[-1,], ME_msh_local_bd[1,]) %>%
cbind(ME_msh_local_bd, .) %>%
t() %>%
matrix(., ncol = 3, byrow = T)
# --layer definition from 7-column paper
# https://www.pnas.org/content/112/44/13711?ijkey=682c42b2318fb1efb9fe6d7ad6da91752ce3fa22&keytype2=tf_ipsecsha
# bp7c <- c(0, 5.5,14.5,20,23,28,36,42,48,56,61) #layer 1 to 10
bp7c <- c(0, 5.5, 14.5, 20, 23, 28, 33, 39, 45, 56, 61) #layer 1 to 10, modify 6-7-8-9 by Mi1, C2, Tm5 and Tm20
bp7c <- max(bp7c) - bp7c %>% rev() #layer 10 to 1
bp7c_prob <- bp7c/max(bp7c)
x_qua <- apply(cbind(top_bd$valfit, bot_bd$valfit), MARGIN = 1,
function(x) quantile(x, probs = bp7c_prob) )
layers <- matrix(ncol = 3, nrow = 0)
for (j in 1:length(bp7c_prob)) {
cc <- cbind(x_qua[j,], yz)
c2 <- cbind(cc[-nrow(cc),], cc[-1,]) %>%
t() %>%
matrix(., ncol = 3, byrow = T)
layers <- rbind(layers, c2)
}
layers[,1] <- layers[,1] * 0.97 + 1100
bd_Mx <- x_qua[,ncol(x_qua)] %>% rev()
bd_Mx <- bd_Mx * 0.97 + 1100
bd_Mx <- bd_Mx[-length(bd_Mx)] + diff(bd_Mx)/2
layer_M_anno <- cbind(bd_Mx, yz[nrow(yz),])
# layers side view
xAngRot_layer <- 30/180*pi
xRot_layer <- matrix(c(1,0,0,
0, cos(xAngRot_layer), sin(xAngRot_layer),
0, -sin(xAngRot_layer), cos(xAngRot_layer)), ncol = 3, byrow = T)
layers_side <- layers %*% (xRot_layer)
# LObula layer -------------------------------------------------------------
xyz_msh <- t(LO_msh_local$vb[1:3,])
# right / top
xyz_top <- xyz_msh[xyz_msh[,3] > - 40000, ]
i1 <- which.min(xyz_top[,1])
i2 <- which.max(xyz_top[,1])
xy <- data.frame(x = seq(xyz_top[i1,1], xyz_top[i2,1], length.out = 20),
y = seq(mean(xyz_top[c(i1,i2),2]), mean(xyz_top[c(i1,i2),2]), length.out = 20) )
x <- xyz_top[,1]; y <- xyz_top[,2]; z <- xyz_top[,3]
fitlm <- lm(z ~ poly(x, y, degree = 2, raw = T))
valfit <- predict(fitlm, xy) #generate values from the fit
top_bd <- data.frame(x=xy$x, y=xy$y, z=valfit)
# bottom
xyz_bot <- xyz_msh[xyz_msh[,3] < - 40000, ]
i1 <- which.min(xyz_bot[,1])
i2 <- which.max(xyz_bot[,1])
xy <- data.frame(x = seq(xyz_bot[i1,1], xyz_bot[i2,1], length.out = 20),
y = seq(mean(xyz_bot[c(i1,i2),2]), mean(xyz_bot[c(i1,i2),2]), length.out = 20) )
x <- xyz_bot[,1]; y <- xyz_bot[,2]; z <- xyz_bot[,3]
fitlm <- lm(z ~ poly(x, y, degree = 2, raw = T))
valfit <- predict(fitlm, xy) #generate values from the fit
bot_bd <- data.frame(x=xy$x, y=xy$y, z=valfit)
# -- layer Wu 2016
# https://elifesciences.org/articles/21022
# bp <- c(0, 0.8, 1.35, 2.1, 2.85, 3.8, 4.85, 6.7)
bp <- c(0, 0.8, 1.35, 2.1, 2.85, 3.8*0.6, 4.85*0.6, 6.7) # mod by Tm5a
bp_prob <- cumsum(bp)/sum(bp)
# bp_prob <- 1 - bp_prob
x_qua <- matrix(ncol = nrow(top_bd), nrow = length(bp_prob))
y_qua <- matrix(ncol = nrow(top_bd), nrow = length(bp_prob))
z_qua <- matrix(ncol = nrow(top_bd), nrow = length(bp_prob))
for (j in 1:length(bp_prob)) {
x_qua[j,] <- top_bd$x + (bot_bd$x - top_bd$x)*bp_prob[j]
y_qua[j,] <- top_bd$y + (bot_bd$y - top_bd$y)*bp_prob[j]
z_qua[j,] <- top_bd$z + (bot_bd$z - top_bd$z)*bp_prob[j]
}
layers_LO <- matrix(ncol = 3, nrow = 0)
for (j in 1:length(bp_prob)) {
cc <- cbind(x_qua[j,], y_qua[j,], z_qua[j,])
c2 <- cbind(cc[-nrow(cc),], cc[-1,]) %>%
t() %>%
matrix(., ncol = 3, byrow = T)
layers_LO <- rbind(layers_LO, c2)
}
layers_LO[,3] <- layers_LO[,3] - 2000 # manual correction
bd_Mx <- x_qua[,1]
bd_Mx <- bd_Mx[-length(bd_Mx)] + diff(bd_Mx)/2
bd_My <- y_qua[,1]
bd_My <- bd_My[-length(bd_My)] + diff(bd_My)/2
bd_Mz <- z_qua[,1]
bd_Mz <- bd_Mz[-length(bd_Mz)] + diff(bd_Mz)/2
layer_LO_anno <- cbind(bd_Mx + c(0,-1,-2,-2,-1.5,-1, -1)*2000, bd_My, bd_Mz)
# generate cylinder shades for plots -----------------------------------------------------
t(ME_msh_local$vb)[,1] %>% range()
x_top <- 38000
x_bot <- -48000
cp1 <- cylinder3d(cbind(seq(x_bot, x_top, by=5000),
xyz_M5_avg_xform_yz[Mi1_ind_p[1],2],
xyz_M5_avg_xform_yz[Mi1_ind_p[1],3]), radius = 2200)
cp2 <- cylinder3d(cbind(seq(x_bot, x_top, by=5000),
xyz_M5_avg_xform_yz[Mi1_ind_p[2],2],
xyz_M5_avg_xform_yz[Mi1_ind_p[2],3]), radius = 2200)
cy1 <- cylinder3d(cbind(seq(x_bot, x_top, by=5000),
xyz_M5_avg_xform_yz[Mi1_ind_y[1],2],
xyz_M5_avg_xform_yz[Mi1_ind_y[1],3]), radius = 2200)
cy2 <- cylinder3d(cbind(seq(x_bot, x_top, by=5000),
xyz_M5_avg_xform_yz[Mi1_ind_y[2],2],
xyz_M5_avg_xform_yz[Mi1_ind_y[2],3]), radius = 2200)