forked from gdurin/pyFitting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbestFit.py
executable file
·381 lines (347 loc) · 13.4 KB
/
bestFit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#!/usr/bin/env python
import sys
import locale
import scipy as sp
from scipy.optimize.minpack import leastsq
import scipy.special as special
import numpy as np
from numpy import pi
import matplotlib.pylab as pylab
import numexpr as ne
from time import time
import re
from getAnalyticalDerivatives import getDiff
def genExpr2Scipy(op, function):
"""
Insert the proper scipy.* module to handle math functions
"""
try:
if op in dir(sp):
sub = "sp."
function = function.replace(op, sub+op)
elif op in dir(special):
op_occurrences = [q for q in dir(special) if op in q]
op_occurrences_in_function = [q for q in op_occurrences if q in function]
if len(op_occurrences_in_function) > 1:
for q in op_occurrences_in_function:
string_to_search = r'\b'+q
function = re.sub(string_to_search, 'special.'+q, function)
else:
sub = "special."
function = function.replace(op, sub+op)
return function
except:
print("Function %s not defined in scipy" % op)
return None
class Theory:
def __init__(self, xName, function, paramsNames, params0, analyDeriv=None):
self.xName = xName
self.parameters = paramsNames
self.initialParams = params0
self.parStr = self.parameters.split(",")
self.fz = function
self.checkFunction = True
self.analyDeriv = analyDeriv
paramsNamesList = paramsNames.split(",")
# Calculate the analytical derivatives
# Return None if not available
self.analyDeriv = getDiff(xName, function, paramsNamesList)
try:
# Then try to compile them to be reused by NumExpr
self.derivsCompiled = map(ne.NumExpr, self.analyDeriv)
except TypeError:
print("Warning: one or more functions are undefined in NumExpr")
self.derivsCompiled = None
def Y(self, x, params):
exec "%s = params" % self.parameters
# Check if the function needs to be changed with sp.functions
if self.checkFunction:
while self.checkFunction:
try:
exec "f = %s" % (self.fz)
self.checkFunction = False
except NameError as inst:
op = inst.message.split("'")[1]
function = genExpr2Scipy(op, self.fz)
if function:
self.fz = function
else:
raise ValueError("Function %s not found" % op)
else:
exec "f = %s" % (self.fz)
return f
def jacobian(self, x, parameterValues, sigma=None):
"""
Calculus of the jacobian with analytical derivatives
"""
if sigma == None:
sigma = 1.
jb = []
checkDerivative = True
exec "%s = parameterValues" % self.parameters
exec "%s = x" % self.xName
if self.derivsCompiled:
for q in self.derivsCompiled:
values = map(eval, q.input_names)
jb.append(q(*values))
else:
for i, q in enumerate(self.analyDeriv):
#print(q)
while checkDerivative:
try:
exec "deriv = %s" % q
self.analyDeriv[i] = q
checkDerivative = False
except NameError as inst:
op = inst.message.split("'")[1]
q = genExpr2Scipy(op, q)
#print("Name error", q)
jb.append(deriv)
checkDerivative = True
print self.analyDeriv
return sp.array(jb)/sigma
class DataCurve:
def __init__(self, fileName, cols, dataRange=(0,None)):
data = sp.loadtxt(fileName)
i0,i1 = dataRange
self.X = data[:,cols[0]][i0:i1]
self.Y = data[:,cols[1]][i0:i1]
if len(cols) > 2:
self.Yerror = data[:,cols[2]][i0:i1]
else:
self.Yerror = None
self.typeColors = 'b'
self.typePoints = 'o'
def len(self):
return len(self.X)
def residual(params, theory, data, linlog, sigma=None, logResidual=False):
"""Calculate residual for fitting"""
residuals = np.array([])
if sigma is None: sigma = 1.
P = theory.Y(data.X, params)
if not logResidual:
res = (P - data.Y)/sigma
else:
res = (sp.log10(P) - sp.log10(data.Y))/sigma
residuals = np.concatenate((residuals, res))
return residuals
def cost(params, theory, data, linlog, sigma):
res = residual(params, theory, data, linlog, sigma)
cst = np.dot(res,res)
# Standard error of the regression
ser = (cst/(data.len()-len(params)))**0.5
return cst, ser
def func(params, data, theory):
return theory.Y(data.X, params)
def jacobian(params, theory, data, linlog,sigma):
return theory.jacobian(data.X, params,sigma)
def plotBestFitT(theory, data, linlog, sigma=None, analyticalDerivs=False, noplot=False):
nStars = 80
print("="*nStars)
t0 = time()
printOut = []
table = []
table.append(['parameter', 'value', 'st. error', 't-statistics'])
params0 = theory.initialParams
print "Initial parameters = ", params0
initCost = cost(params0, theory, data,linlog,sigma)
printOut.append(initCost)
print 'initial cost = %.10e (StD: %.10e)' % cost(params0, theory, data,linlog,sigma)
maxfev = 500*(len(params0)+1)
if analyticalDerivs:
full_output = leastsq(residual,params0,args=(theory,data,linlog,sigma),\
maxfev=maxfev, Dfun=jacobian, col_deriv=True, full_output=1)
else:
full_output = leastsq(residual,params0,\
args=(theory,data,linlog,sigma), maxfev=maxfev, full_output=1)
params, covmatrix, infodict, mesg, ier = full_output
costValue, costStdDev = cost(params, theory, data, sigma=sigma, linlog='lin')
print 'optimized cost = %.10e (StD: %.10e)' % (costValue, costStdDev)
printOut.append(costValue)
jcb = jacobian(params, theory, data, linlog,sigma)
# The method of calculating the covariance matrix as
# analyCovMatrix = sp.matrix(sp.dot(jcb, jcb.T)).I
# is not valid in some cases. A general solution is to make the QR
# decomposition, as done by the routine
if covmatrix is None: # fitting not converging
for i in range(len(params)):
stOut = theory.parStr[i], '\t', params[i]
print theory.parStr[i], '\t', params[i]
printOut.append(stOut)
else:
for i in range(len(params)):
if not sigma == None: # This is the case of weigthed least-square
stDevParams = covmatrix[i,i]**0.5
else:
stDevParams = covmatrix[i,i]**0.5*costStdDev
par = params[i]
table.append([theory.parStr[i], par, stDevParams, par/stDevParams])
#if abs(params[i]) > 1e5:
#print "%s = %.8e +- %.8e" % (theory.parStr[i].ljust(5), params[i], stDevParams)
#else:
#print "%s = %.8f +- %.8f" % (theory.parStr[i].ljust(5), params[i], stDevParams)
stOut = theory.parStr[i], '\t', params[i], '+-', stDevParams
printOut.append(stOut)
print("="*nStars)
pprint_table(table)
print("="*nStars)
print "Done in %d iterations" % infodict['nfev']
print mesg
print("="*nStars)
# Chi2 test
# n. of degree of freedom
print "n. of data = %d" % data.len()
dof = data.len() - len(params)
print "degree of freedom = %d" % (dof)
pValue = 1.-sp.special.gammainc(dof/2., costValue/2.)
print "X^2_rel = %f" % (costValue/dof)
print "pValue = %f (statistically significant if < 0.05)" % (pValue)
ts = round(time() - t0, 3)
print "*** Time elapsed:", ts
if not noplot:
calculatedData= theory.Y(data.X,params)
if linlog == "lin":
pylab.plot(data.X,data.Y, 'bo',data.X,calculatedData,'r')
else:
pylab.loglog(data.X,data.Y, 'bo',data.X,calculatedData,'r')
if sigma is not None:
pylab.errorbar(data.X,data.Y, sigma,fmt=None)
pylab.show()
# Alternative fitting
#full_output = sp.optimize.curve_fit(func,data.X,data.Y,params0,None)
#print "Alternative fitting"
#print full_output
return
def format_num(num):
"""Format a number according to given places.
Adds commas, etc. Will truncate floats into ints!"""
try:
inum = int(num)
return locale.format("%.5f", (0, inum), True)
except (ValueError, TypeError):
return str(num)
def get_max_width(table, index):
"""Get the maximum width of the given column index"""
return max([len(format_num(row[index])) for row in table])
def pprint_table(table, out=sys.stdout):
"""Prints out a table of data, padded for alignment
@param out: Output stream (file-like object)
@param table: The table to print. A list of lists.
Each row must have the same number of columns. """
col_paddings = []
for i in range(len(table[0])):
col_paddings.append(get_max_width(table, i))
for row in table:
# left col
print >> out, row[0].ljust(col_paddings[0] + 1),
# rest of the cols
for i in range(1, len(row)):
col = format_num(row[i]).rjust(col_paddings[i] + 2)
print >> out, col,
print >> out
def main():
# default values of input parameters:
linlog = "lin"
dataRangeMin = 0
dataRangeMax = None
dataRange = dataRangeMin, dataRangeMax
cols = 0,1
parNames = "a,b"
func = "a+b*x"
sigma = None
helpString = """
bestFit v.0.1.3
august 19 - 2011
Usage summary: bestFit [OPTIONS]
OPTIONS:
-f, --filename Filename of the data in form of columns
-c, --cols Columns to get the data (defaults: 0,1); a third number is used for errors' column
-v, --vars Variables (defaults: x,y)
-r, --range Range of the data to consider (i.e. 0:4; 0:-1 takes all)
-p, --fitpars Fitting Parameters names (separated by comas)
-i, --initvals Initial values of the parameters (separated by comas)
-t, --theory Theoretical function to best fit the data (between "...")
-s, --sigma Estimation of the error in the data (as a constant value)
-d, --derivs Use analytical derivatives
--lin Use data in linear mode (default)
--log Use data il log mode (best for log-log data)
--noplot Don't show the plot output
EXAMPLE
bestfit -f mydata.dat -c 0,2 -r 10:-1 -v x,y -p a,b -i 1,1. -t "a+b*x"
"""
failString = "Failed: Not enough input filenames specified"
if len(sys.argv) == 1:
print failString
print helpString
sys.exit()
if "-f" not in sys.argv and "--filename" not in sys.argv:
print failString
print helpString
sys.exit()
variables = "x","y"
analyticalDerivs = False
noPlot = False
# read variables from the command line, one by one:
while len(sys.argv) > 1:
option = sys.argv[1]
del sys.argv[1]
if option == '-f' or option == "--filename":
fileName = sys.argv[1]
del sys.argv[1]
elif option == '-c' or option == "--cols":
cols = sys.argv[1].split(",")
cols = [int(i) for i in cols]
del sys.argv[1]
elif option == '-d' or option == '--deriv':
#aDtype = sys.argv[1]
analyticalDerivs = True
#del sys.argv[1]
elif option == '-v' or option == "--vars":
variables = tuple(sys.argv[1].split(","))
del sys.argv[1]
elif option == '-t' or option == "--theory":
func = sys.argv[1]
del sys.argv[1]
elif option == '-p' or option == "--fitpars":
parNames = sys.argv[1]
del sys.argv[1]
elif option == '-i' or option == "--initvals":
pOut = []
for p in sys.argv[1].split(","):
pOut.append(float(p))
params0 = tuple(pOut)
del sys.argv[1]
elif '-log' in option :
linlog = "log"
elif '-lin' in option:
linlog = "lin"
elif '-s' in option:
sigma = float(sys.argv[1])
del sys.argv[1]
elif '--noplot':
noPlot = True
elif option == '-r' or option == "--range":
dataRange = sys.argv[1]
if ":" in dataRange:
m, M = dataRange.split(":")
if m == "":
dataRangeMin = 0
else:
dataRangeMin = int(m)
if M == "":
dataRangeMax = None
else:
dataRangeMax = int(M)
dataRange = dataRangeMin, dataRangeMax
else:
print "Error in setting the data range: use min:max"
sys.exit()
data = DataCurve(fileName,cols,dataRange)
theory = Theory(variables[0], func, parNames, params0,analyticalDerivs)
if data.Yerror is not None:
sigma = data.Yerror
if not theory.analyDeriv:
analyticalDerivs = False
plotBestFitT(theory,data,linlog,sigma, analyticalDerivs,noPlot)
if __name__ == "__main__":
main()