-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrVectori.cpp
308 lines (295 loc) · 6.02 KB
/
rVectori.cpp
1
//#include <iostream.h>#include <math.h>#include "rPointi.h"#include "rVectori.h"#include "rVector.h"//rVectori::operator vector () { rVector p((double)x,(double)y,(double)z); return p; }/* * Class declaration^ */rVectori::rVectori(rPointi p) : rPointi (p){ }rVectori::rVectori(rVectori &p) : rPointi (p.x,p.y,p.z){ }rVectori::rVectori(rPointi A,rPointi B) : rPointi (B.x-A.x,B.y-A.y,B.z-A.z){ }/*rVectori::operator rPointi (){ rPointi c(x,y,z); return c;}*//* Cross Product */rVectori rVectori::operator*(rVectori b){ rVectori c; c.x = y*b.z-z*b.y; c.y = z*b.x-x*b.z; c.z = x*b.y-y*b.x; return (c);}rVectori rVectori::operator*=(rVectori b){ rVectori c; c.x = y*b.z-z*b.y; c.y = z*b.x-x*b.z; c.z = x*b.y-y*b.x; *this = c; return (*this);}/* ScalerVectori rVectori::operator*(int b){ rVectori c; c.x = c.x*b; c.y = c.y*b; c.z = c.z*b; return (c);}rVectori rVectori::operator/(int b){ rVectori c; c.x = c.x/b; c.y = c.y/b; c.z = c.z/b; return (c);} */rVectori rVectori::cross(rVectori b){ rVectori c; c.x = y*b.z-z*b.y; c.y = z*b.x-x*b.z; c.z = x*b.y-y*b.x; return c;}/* Dot Product */int rVectori::operator|(rVectori b){ return (x*b.x+y*b.y+z*b.z);}int rVectori::dot(rVectori u){ return (x*u.x+y*u.y+z*u.z);}/* One rVector divided by another. */rVectori rVectori::operator/(rVectori b){ rVectori c (x/b.x,y/b.y,z/b.z); return (c);}/* Add rVectors by scalars. */rVectori operator+(int a,rVectori b){ rVectori c(a+b.x,a+b.y,a+b.z); return c;}rVectori operator+(rVectori b,int a){ rVectori c(a+b.x,a+b.y,a+b.z); return c;}/* Subtract rVectors by scalars. */rVectori operator-(int a,rVectori b){ rVectori c(a-b.x,a-b.y,a-b.z); return c;}rVectori operator-(rVectori b,int a){ rVectori c(a-b.x,a-b.y,a-b.z); return c;}/* Multiply rVectors by scalars. */rVectori operator*(int a,rVectori b){ rVectori c(a*b.x,a*b.y,a*b.z); return c;}rVectori operator*(rVectori b,int a){ rVectori c(a*b.x,a*b.y,a*b.z); return c;}/* Divide rVectors by scalars. */rVectori operator/(int a,rVectori b){ rVectori c(a/b.x,a/b.y,a/b.z); return c;}rVectori operator/(rVectori b,int a){ rVectori c(a/b.x,a/b.y,a/b.z); return c;}/* Dot two rVectors. *//*int operator|(rVectori &a,rVectori &b){ return (a.x*b.x+a.y*b.y+a.z*b.z);}*//* One rVector divided by another. *//*rVectori operator/(rVectori &a,rVectori &b){ rVectori c (a.x/b.x,a.y/b.y,a.z/b.z); return (c);}*//* Add two rVectors */rVectori operator+(rVectori a,rVectori b){ rVectori c(a.x+b.x,a.y+b.y,a.z+b.z); return c;}/* Subtract two rVectors. */rVectori operator-(rVectori a,rVectori b){ rVectori c(a.x-b.x,a.y-b.y,a.z-b.z); return c;}rVectori& rVectori::operator*=(int s){ x *= s; y *= s; z *= s; return (*this);}rVectori& rVectori::operator/=(int s){ x /= s; y /= s; z /= s; return (*this);}rVectori& rVectori::operator+=(int s){ x += s; y += s; z += s; return (*this);}rVectori& rVectori::operator+=(rVectori b){ x += b.x; y += b.y; z += b.z; return (*this);}rVectori& rVectori::operator-=(rVectori b){ x -= b.x; y -= b.y; z -= b.z; return (*this);}rVectori& rVectori::operator-=(int s){ x -= s; y -= s; z -= s; return (*this);}int rVectori::is_acute_with (rVectori &v){ return (angle_with (v)==-1);}int rVectori::is_obtuse_with (rVectori &v){ return (angle_with (v)==1);}/* this function determines whether the angle between two rVectors is acute, obtuse, or 180 degrees. acuteness depends upon the direction of the cross product in relation to the two rVectors. */int rVectori::angle_with (rVectori &v){ rVectori cp;cp = *this*v; int thesin_plus = cp.magnitude (); cp = v* *this; int thesin_neg = cp.magnitude (); int thedot = this->dot (v); if (thedot == 1) return -1; if (thesin_plus == 0) return 0; if (thedot < 0) { if (thesin_plus < thesin_neg) return 1; // obtuse angle else if (thesin_plus > thesin_neg) return -1; // acute angle else return 0;// colinear } else if (thedot > 0) { if (thesin_plus > thesin_neg) return 1; // obtuse angle else if (thesin_plus < thesin_neg) return -1; // acute angle else return 0; //colinear } else { /* perturb one of the rVectors a little to make them not perpendicular, then do the test again. */ rVectori tmp((int)((v.x+x)/2.0),(int)((v.y+y)/2.0),(int)((v.z+z)/2.0)); return angle_with (tmp); }}int rVectori::angle_with (rVectori &v,rVectori &cp,rVectori &cn){ int thesin_plus = cp.magnitude (); int thesin_neg = cn.magnitude (); int thedot = this->dot (v); if (thedot == 1) return -1; if (thesin_plus == 0) return 0; if (thedot < 0) { if (thesin_plus < thesin_neg) return 1; // obtuse angle else if (thesin_plus > thesin_neg) return -1; // acute angle else return 0;// colinear } else if (thedot > 0) { if (thesin_plus > thesin_neg) return 1; // obtuse angle else if (thesin_plus < thesin_neg) return -1; // acute angle else return 0; //colinear } else { /* perturb one of the rVectors a little to make them not perpendicular, then do the test again. */ rVectori tmp((int)((v.x+x)/2.0),(int)((v.y+y)/2.0),(int)((v.z+z)/2.0)); return angle_with (tmp); }}int rVectori::angle_with (rVectori &v,int &thesin_plus,int &thesin_neg,int &thedot){ if (thedot == 1) return -1; if (thesin_plus == 0) return 0; if (thedot < 0) { if (thesin_plus < thesin_neg) return 1; // obtuse angle else if (thesin_plus > thesin_neg) return -1; // acute angle else return 0;// colinear } else if (thedot > 0) { if (thesin_plus > thesin_neg) return 1; // obtuse angle else if (thesin_plus < thesin_neg) return -1; // acute angle else return 0; //colinear } else { /* perturb one of the rVectors a little to make them not perpendicular, then do the test again. */ rVectori tmp((int)((v.x+x)/2.0),(int)((v.y+y)/2.0),(int)((v.z+z)/2.0)); return angle_with (tmp); }}