forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIndexIVFPQ.cpp
1715 lines (1374 loc) · 48.5 KB
/
IndexIVFPQ.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include "IndexIVFPQ.h"
#include <cmath>
#include <cstdio>
#include <cassert>
#include <stdint.h>
#ifdef __SSE__
#include <immintrin.h>
#endif
#include <algorithm>
#include "Heap.h"
#include "utils.h"
#include "Clustering.h"
#include "IndexFlat.h"
#include "hamming.h"
#include "FaissAssert.h"
#include "AuxIndexStructures.h"
namespace faiss {
/*****************************************
* IndexIVFPQ implementation
******************************************/
IndexIVFPQ::IndexIVFPQ (Index * quantizer, size_t d, size_t nlist,
size_t M, size_t nbits_per_idx):
IndexIVF (quantizer, d, nlist, 0, METRIC_L2),
pq (d, M, nbits_per_idx)
{
FAISS_THROW_IF_NOT (nbits_per_idx <= 8);
code_size = pq.code_size;
invlists->code_size = code_size;
is_trained = false;
by_residual = true;
use_precomputed_table = 0;
scan_table_threshold = 0;
polysemous_training = nullptr;
do_polysemous_training = false;
polysemous_ht = 0;
}
/****************************************************************
* training */
void IndexIVFPQ::train_residual (idx_t n, const float *x)
{
train_residual_o (n, x, nullptr);
}
void IndexIVFPQ::train_residual_o (idx_t n, const float *x, float *residuals_2)
{
const float * x_in = x;
x = fvecs_maybe_subsample (
d, (size_t*)&n, pq.cp.max_points_per_centroid * pq.ksub,
x, verbose, pq.cp.seed);
ScopeDeleter<float> del_x (x_in == x ? nullptr : x);
const float *trainset;
ScopeDeleter<float> del_residuals;
if (by_residual) {
if(verbose) printf("computing residuals\n");
idx_t * assign = new idx_t [n]; // assignement to coarse centroids
ScopeDeleter<idx_t> del (assign);
quantizer->assign (n, x, assign);
float *residuals = new float [n * d];
del_residuals.set (residuals);
for (idx_t i = 0; i < n; i++)
quantizer->compute_residual (x + i * d, residuals+i*d, assign[i]);
trainset = residuals;
} else {
trainset = x;
}
if (verbose)
printf ("training %zdx%zd product quantizer on %ld vectors in %dD\n",
pq.M, pq.ksub, n, d);
pq.verbose = verbose;
pq.train (n, trainset);
if (do_polysemous_training) {
if (verbose)
printf("doing polysemous training for PQ\n");
PolysemousTraining default_pt;
PolysemousTraining *pt = polysemous_training;
if (!pt) pt = &default_pt;
pt->optimize_pq_for_hamming (pq, n, trainset);
}
// prepare second-level residuals for refine PQ
if (residuals_2) {
uint8_t *train_codes = new uint8_t [pq.code_size * n];
ScopeDeleter<uint8_t> del (train_codes);
pq.compute_codes (trainset, train_codes, n);
for (idx_t i = 0; i < n; i++) {
const float *xx = trainset + i * d;
float * res = residuals_2 + i * d;
pq.decode (train_codes + i * pq.code_size, res);
for (int j = 0; j < d; j++)
res[j] = xx[j] - res[j];
}
}
if (by_residual) {
precompute_table ();
}
}
/****************************************************************
* IVFPQ as codec */
/* produce a binary signature based on the residual vector */
void IndexIVFPQ::encode (idx_t key, const float * x, uint8_t * code) const
{
if (by_residual) {
float residual_vec[d];
quantizer->compute_residual (x, residual_vec, key);
pq.compute_code (residual_vec, code);
}
else pq.compute_code (x, code);
}
void IndexIVFPQ::encode_multiple (size_t n, idx_t *keys,
const float * x, uint8_t * xcodes,
bool compute_keys) const
{
if (compute_keys)
quantizer->assign (n, x, keys);
encode_vectors (n, x, keys, xcodes);
}
void IndexIVFPQ::decode_multiple (size_t n, const idx_t *keys,
const uint8_t * xcodes, float * x) const
{
pq.decode (xcodes, x, n);
if (by_residual) {
std::vector<float> centroid (d);
for (size_t i = 0; i < n; i++) {
quantizer->reconstruct (keys[i], centroid.data());
float *xi = x + i * d;
for (size_t j = 0; j < d; j++) {
xi [j] += centroid [j];
}
}
}
}
/****************************************************************
* add */
void IndexIVFPQ::add_with_ids (idx_t n, const float * x, const idx_t *xids)
{
add_core_o (n, x, xids, nullptr);
}
static float * compute_residuals (
const Index *quantizer,
Index::idx_t n, const float* x,
const Index::idx_t *list_nos)
{
size_t d = quantizer->d;
float *residuals = new float [n * d];
// TODO: parallelize?
for (size_t i = 0; i < n; i++) {
if (list_nos[i] < 0)
memset (residuals + i * d, 0, sizeof(*residuals) * d);
else
quantizer->compute_residual (
x + i * d, residuals + i * d, list_nos[i]);
}
return residuals;
}
void IndexIVFPQ::encode_vectors(idx_t n, const float* x,
const idx_t *list_nos,
uint8_t * codes) const
{
if (by_residual) {
float *to_encode = compute_residuals (quantizer, n, x, list_nos);
ScopeDeleter<float> del (to_encode);
pq.compute_codes (to_encode, codes, n);
} else {
pq.compute_codes (x, codes, n);
}
}
void IndexIVFPQ::add_core_o (idx_t n, const float * x, const idx_t *xids,
float *residuals_2, const idx_t *precomputed_idx)
{
idx_t bs = 32768;
if (n > bs) {
for (idx_t i0 = 0; i0 < n; i0 += bs) {
idx_t i1 = std::min(i0 + bs, n);
if (verbose) {
printf("IndexIVFPQ::add_core_o: adding %ld:%ld / %ld\n",
i0, i1, n);
}
add_core_o (i1 - i0, x + i0 * d,
xids ? xids + i0 : nullptr,
residuals_2 ? residuals_2 + i0 * d : nullptr,
precomputed_idx ? precomputed_idx + i0 : nullptr);
}
return;
}
InterruptCallback::check();
FAISS_THROW_IF_NOT (is_trained);
double t0 = getmillisecs ();
const idx_t * idx;
ScopeDeleter<idx_t> del_idx;
if (precomputed_idx) {
idx = precomputed_idx;
} else {
idx_t * idx0 = new idx_t [n];
del_idx.set (idx0);
quantizer->assign (n, x, idx0);
idx = idx0;
}
double t1 = getmillisecs ();
uint8_t * xcodes = new uint8_t [n * code_size];
ScopeDeleter<uint8_t> del_xcodes (xcodes);
const float *to_encode = nullptr;
ScopeDeleter<float> del_to_encode;
if (by_residual) {
to_encode = compute_residuals (quantizer, n, x, idx);
del_to_encode.set (to_encode);
} else {
to_encode = x;
}
pq.compute_codes (to_encode, xcodes, n);
double t2 = getmillisecs ();
// TODO: parallelize?
size_t n_ignore = 0;
for (size_t i = 0; i < n; i++) {
idx_t key = idx[i];
if (key < 0) {
n_ignore ++;
if (residuals_2)
memset (residuals_2, 0, sizeof(*residuals_2) * d);
continue;
}
idx_t id = xids ? xids[i] : ntotal + i;
uint8_t *code = xcodes + i * code_size;
size_t offset = invlists->add_entry (key, id, code);
if (residuals_2) {
float *res2 = residuals_2 + i * d;
const float *xi = to_encode + i * d;
pq.decode (code, res2);
for (int j = 0; j < d; j++)
res2[j] = xi[j] - res2[j];
}
if (maintain_direct_map)
direct_map.push_back (key << 32 | offset);
}
double t3 = getmillisecs ();
if(verbose) {
char comment[100] = {0};
if (n_ignore > 0)
snprintf (comment, 100, "(%ld vectors ignored)", n_ignore);
printf(" add_core times: %.3f %.3f %.3f %s\n",
t1 - t0, t2 - t1, t3 - t2, comment);
}
ntotal += n;
}
void IndexIVFPQ::reconstruct_from_offset (int64_t list_no, int64_t offset,
float* recons) const
{
const uint8_t* code = invlists->get_single_code (list_no, offset);
if (by_residual) {
std::vector<float> centroid(d);
quantizer->reconstruct (list_no, centroid.data());
pq.decode (code, recons);
for (int i = 0; i < d; ++i) {
recons[i] += centroid[i];
}
} else {
pq.decode (code, recons);
}
}
/// 2G by default, accommodates tables up to PQ32 w/ 65536 centroids
size_t IndexIVFPQ::precomputed_table_max_bytes = ((size_t)1) << 31;
/** Precomputed tables for residuals
*
* During IVFPQ search with by_residual, we compute
*
* d = || x - y_C - y_R ||^2
*
* where x is the query vector, y_C the coarse centroid, y_R the
* refined PQ centroid. The expression can be decomposed as:
*
* d = || x - y_C ||^2 + || y_R ||^2 + 2 * (y_C|y_R) - 2 * (x|y_R)
* --------------- --------------------------- -------
* term 1 term 2 term 3
*
* When using multiprobe, we use the following decomposition:
* - term 1 is the distance to the coarse centroid, that is computed
* during the 1st stage search.
* - term 2 can be precomputed, as it does not involve x. However,
* because of the PQ, it needs nlist * M * ksub storage. This is why
* use_precomputed_table is off by default
* - term 3 is the classical non-residual distance table.
*
* Since y_R defined by a product quantizer, it is split across
* subvectors and stored separately for each subvector. If the coarse
* quantizer is a MultiIndexQuantizer then the table can be stored
* more compactly.
*
* At search time, the tables for term 2 and term 3 are added up. This
* is faster when the length of the lists is > ksub * M.
*/
void IndexIVFPQ::precompute_table ()
{
if (use_precomputed_table == -1)
return;
if (use_precomputed_table == 0) { // then choose the type of table
if (quantizer->metric_type == METRIC_INNER_PRODUCT) {
if (verbose) {
printf("IndexIVFPQ::precompute_table: precomputed "
"tables not needed for inner product quantizers\n");
}
return;
}
const MultiIndexQuantizer *miq =
dynamic_cast<const MultiIndexQuantizer *> (quantizer);
if (miq && pq.M % miq->pq.M == 0)
use_precomputed_table = 2;
else {
size_t table_size = pq.M * pq.ksub * nlist * sizeof(float);
if (table_size > precomputed_table_max_bytes) {
if (verbose) {
printf(
"IndexIVFPQ::precompute_table: not precomputing table, "
"it would be too big: %ld bytes (max %ld)\n",
table_size, precomputed_table_max_bytes);
use_precomputed_table = 0;
}
return;
}
use_precomputed_table = 1;
}
} // otherwise assume user has set appropriate flag on input
if (verbose) {
printf ("precomputing IVFPQ tables type %d\n",
use_precomputed_table);
}
// squared norms of the PQ centroids
std::vector<float> r_norms (pq.M * pq.ksub, NAN);
for (int m = 0; m < pq.M; m++)
for (int j = 0; j < pq.ksub; j++)
r_norms [m * pq.ksub + j] =
fvec_norm_L2sqr (pq.get_centroids (m, j), pq.dsub);
if (use_precomputed_table == 1) {
precomputed_table.resize (nlist * pq.M * pq.ksub);
std::vector<float> centroid (d);
for (size_t i = 0; i < nlist; i++) {
quantizer->reconstruct (i, centroid.data());
float *tab = &precomputed_table[i * pq.M * pq.ksub];
pq.compute_inner_prod_table (centroid.data(), tab);
fvec_madd (pq.M * pq.ksub, r_norms.data(), 2.0, tab, tab);
}
} else if (use_precomputed_table == 2) {
const MultiIndexQuantizer *miq =
dynamic_cast<const MultiIndexQuantizer *> (quantizer);
FAISS_THROW_IF_NOT (miq);
const ProductQuantizer &cpq = miq->pq;
FAISS_THROW_IF_NOT (pq.M % cpq.M == 0);
precomputed_table.resize(cpq.ksub * pq.M * pq.ksub);
// reorder PQ centroid table
std::vector<float> centroids (d * cpq.ksub, NAN);
for (int m = 0; m < cpq.M; m++) {
for (size_t i = 0; i < cpq.ksub; i++) {
memcpy (centroids.data() + i * d + m * cpq.dsub,
cpq.get_centroids (m, i),
sizeof (*centroids.data()) * cpq.dsub);
}
}
pq.compute_inner_prod_tables (cpq.ksub, centroids.data (),
precomputed_table.data ());
for (size_t i = 0; i < cpq.ksub; i++) {
float *tab = &precomputed_table[i * pq.M * pq.ksub];
fvec_madd (pq.M * pq.ksub, r_norms.data(), 2.0, tab, tab);
}
}
}
namespace {
using idx_t = Index::idx_t;
static uint64_t get_cycles () {
#ifdef __x86_64__
uint32_t high, low;
asm volatile("rdtsc \n\t"
: "=a" (low),
"=d" (high));
return ((uint64_t)high << 32) | (low);
#else
return 0;
#endif
}
#define TIC t0 = get_cycles()
#define TOC get_cycles () - t0
/** QueryTables manages the various ways of searching an
* IndexIVFPQ. The code contains a lot of branches, depending on:
* - metric_type: are we computing L2 or Inner product similarity?
* - by_residual: do we encode raw vectors or residuals?
* - use_precomputed_table: are x_R|x_C tables precomputed?
* - polysemous_ht: are we filtering with polysemous codes?
*/
struct QueryTables {
/*****************************************************
* General data from the IVFPQ
*****************************************************/
const IndexIVFPQ & ivfpq;
const IVFSearchParameters *params;
// copied from IndexIVFPQ for easier access
int d;
const ProductQuantizer & pq;
MetricType metric_type;
bool by_residual;
int use_precomputed_table;
int polysemous_ht;
// pre-allocated data buffers
float * sim_table, * sim_table_2;
float * residual_vec, *decoded_vec;
// single data buffer
std::vector<float> mem;
// for table pointers
std::vector<const float *> sim_table_ptrs;
explicit QueryTables (const IndexIVFPQ & ivfpq,
const IVFSearchParameters *params):
ivfpq(ivfpq),
d(ivfpq.d),
pq (ivfpq.pq),
metric_type (ivfpq.metric_type),
by_residual (ivfpq.by_residual),
use_precomputed_table (ivfpq.use_precomputed_table)
{
mem.resize (pq.ksub * pq.M * 2 + d * 2);
sim_table = mem.data ();
sim_table_2 = sim_table + pq.ksub * pq.M;
residual_vec = sim_table_2 + pq.ksub * pq.M;
decoded_vec = residual_vec + d;
// for polysemous
polysemous_ht = ivfpq.polysemous_ht;
if (auto ivfpq_params =
dynamic_cast<const IVFPQSearchParameters *>(params)) {
polysemous_ht = ivfpq_params->polysemous_ht;
}
if (polysemous_ht != 0) {
q_code.resize (pq.code_size);
}
init_list_cycles = 0;
sim_table_ptrs.resize (pq.M);
}
/*****************************************************
* What we do when query is known
*****************************************************/
// field specific to query
const float * qi;
// query-specific intialization
void init_query (const float * qi) {
this->qi = qi;
if (metric_type == METRIC_INNER_PRODUCT)
init_query_IP ();
else
init_query_L2 ();
if (!by_residual && polysemous_ht != 0)
pq.compute_code (qi, q_code.data());
}
void init_query_IP () {
// precompute some tables specific to the query qi
pq.compute_inner_prod_table (qi, sim_table);
}
void init_query_L2 () {
if (!by_residual) {
pq.compute_distance_table (qi, sim_table);
} else if (use_precomputed_table) {
pq.compute_inner_prod_table (qi, sim_table_2);
}
}
/*****************************************************
* When inverted list is known: prepare computations
*****************************************************/
// fields specific to list
Index::idx_t key;
float coarse_dis;
std::vector<uint8_t> q_code;
uint64_t init_list_cycles;
/// once we know the query and the centroid, we can prepare the
/// sim_table that will be used for accumulation
/// and dis0, the initial value
float precompute_list_tables () {
float dis0 = 0;
uint64_t t0; TIC;
if (by_residual) {
if (metric_type == METRIC_INNER_PRODUCT)
dis0 = precompute_list_tables_IP ();
else
dis0 = precompute_list_tables_L2 ();
}
init_list_cycles += TOC;
return dis0;
}
float precompute_list_table_pointers () {
float dis0 = 0;
uint64_t t0; TIC;
if (by_residual) {
if (metric_type == METRIC_INNER_PRODUCT)
FAISS_THROW_MSG ("not implemented");
else
dis0 = precompute_list_table_pointers_L2 ();
}
init_list_cycles += TOC;
return dis0;
}
/*****************************************************
* compute tables for inner prod
*****************************************************/
float precompute_list_tables_IP ()
{
// prepare the sim_table that will be used for accumulation
// and dis0, the initial value
ivfpq.quantizer->reconstruct (key, decoded_vec);
// decoded_vec = centroid
float dis0 = fvec_inner_product (qi, decoded_vec, d);
if (polysemous_ht) {
for (int i = 0; i < d; i++) {
residual_vec [i] = qi[i] - decoded_vec[i];
}
pq.compute_code (residual_vec, q_code.data());
}
return dis0;
}
/*****************************************************
* compute tables for L2 distance
*****************************************************/
float precompute_list_tables_L2 ()
{
float dis0 = 0;
if (use_precomputed_table == 0 || use_precomputed_table == -1) {
ivfpq.quantizer->compute_residual (qi, residual_vec, key);
pq.compute_distance_table (residual_vec, sim_table);
if (polysemous_ht != 0) {
pq.compute_code (residual_vec, q_code.data());
}
} else if (use_precomputed_table == 1) {
dis0 = coarse_dis;
fvec_madd (pq.M * pq.ksub,
&ivfpq.precomputed_table [key * pq.ksub * pq.M],
-2.0, sim_table_2,
sim_table);
if (polysemous_ht != 0) {
ivfpq.quantizer->compute_residual (qi, residual_vec, key);
pq.compute_code (residual_vec, q_code.data());
}
} else if (use_precomputed_table == 2) {
dis0 = coarse_dis;
const MultiIndexQuantizer *miq =
dynamic_cast<const MultiIndexQuantizer *> (ivfpq.quantizer);
FAISS_THROW_IF_NOT (miq);
const ProductQuantizer &cpq = miq->pq;
int Mf = pq.M / cpq.M;
const float *qtab = sim_table_2; // query-specific table
float *ltab = sim_table; // (output) list-specific table
long k = key;
for (int cm = 0; cm < cpq.M; cm++) {
// compute PQ index
int ki = k & ((uint64_t(1) << cpq.nbits) - 1);
k >>= cpq.nbits;
// get corresponding table
const float *pc = &ivfpq.precomputed_table
[(ki * pq.M + cm * Mf) * pq.ksub];
if (polysemous_ht == 0) {
// sum up with query-specific table
fvec_madd (Mf * pq.ksub,
pc,
-2.0, qtab,
ltab);
ltab += Mf * pq.ksub;
qtab += Mf * pq.ksub;
} else {
for (int m = cm * Mf; m < (cm + 1) * Mf; m++) {
q_code[m] = fvec_madd_and_argmin
(pq.ksub, pc, -2, qtab, ltab);
pc += pq.ksub;
ltab += pq.ksub;
qtab += pq.ksub;
}
}
}
}
return dis0;
}
float precompute_list_table_pointers_L2 ()
{
float dis0 = 0;
if (use_precomputed_table == 1) {
dis0 = coarse_dis;
const float * s = &ivfpq.precomputed_table [key * pq.ksub * pq.M];
for (int m = 0; m < pq.M; m++) {
sim_table_ptrs [m] = s;
s += pq.ksub;
}
} else if (use_precomputed_table == 2) {
dis0 = coarse_dis;
const MultiIndexQuantizer *miq =
dynamic_cast<const MultiIndexQuantizer *> (ivfpq.quantizer);
FAISS_THROW_IF_NOT (miq);
const ProductQuantizer &cpq = miq->pq;
int Mf = pq.M / cpq.M;
long k = key;
int m0 = 0;
for (int cm = 0; cm < cpq.M; cm++) {
int ki = k & ((uint64_t(1) << cpq.nbits) - 1);
k >>= cpq.nbits;
const float *pc = &ivfpq.precomputed_table
[(ki * pq.M + cm * Mf) * pq.ksub];
for (int m = m0; m < m0 + Mf; m++) {
sim_table_ptrs [m] = pc;
pc += pq.ksub;
}
m0 += Mf;
}
} else {
FAISS_THROW_MSG ("need precomputed tables");
}
if (polysemous_ht) {
FAISS_THROW_MSG ("not implemented");
// Not clear that it makes sense to implemente this,
// because it costs M * ksub, which is what we wanted to
// avoid with the tables pointers.
}
return dis0;
}
};
template<class C>
struct KnnSearchResults {
idx_t key;
const idx_t *ids;
// heap params
size_t k;
float * heap_sim;
idx_t * heap_ids;
size_t nup;
inline void add (idx_t j, float dis) {
if (C::cmp (heap_sim[0], dis)) {
heap_pop<C> (k, heap_sim, heap_ids);
idx_t id = ids ? ids[j] : (key << 32 | j);
heap_push<C> (k, heap_sim, heap_ids, dis, id);
nup++;
}
}
};
template<class C>
struct RangeSearchResults {
idx_t key;
const idx_t *ids;
// wrapped result structure
float radius;
RangeQueryResult & rres;
inline void add (idx_t j, float dis) {
if (C::cmp (radius, dis)) {
idx_t id = ids ? ids[j] : (key << 32 | j);
rres.add (dis, id);
}
}
};
/*****************************************************
* Scaning the codes.
* The scanning functions call their favorite precompute_*
* function to precompute the tables they need.
*****************************************************/
template <typename IDType, MetricType METRIC_TYPE>
struct IVFPQScannerT: QueryTables {
const uint8_t * list_codes;
const IDType * list_ids;
size_t list_size;
IVFPQScannerT (const IndexIVFPQ & ivfpq, const IVFSearchParameters *params):
QueryTables (ivfpq, params)
{
FAISS_THROW_IF_NOT (pq.nbits == 8);
assert(METRIC_TYPE == metric_type);
}
float dis0;
void init_list (idx_t list_no, float coarse_dis,
int mode) {
this->key = list_no;
this->coarse_dis = coarse_dis;
if (mode == 2) {
dis0 = precompute_list_tables ();
} else if (mode == 1) {
dis0 = precompute_list_table_pointers ();
}
}
/*****************************************************
* Scaning the codes: simple PQ scan.
*****************************************************/
/// version of the scan where we use precomputed tables
template<class SearchResultType>
void scan_list_with_table (size_t ncode, const uint8_t *codes,
SearchResultType & res) const
{
for (size_t j = 0; j < ncode; j++) {
float dis = dis0;
const float *tab = sim_table;
for (size_t m = 0; m < pq.M; m++) {
dis += tab[*codes++];
tab += pq.ksub;
}
res.add(j, dis);
}
}
/// tables are not precomputed, but pointers are provided to the
/// relevant X_c|x_r tables
template<class SearchResultType>
void scan_list_with_pointer (size_t ncode, const uint8_t *codes,
SearchResultType & res) const
{
for (size_t j = 0; j < ncode; j++) {
float dis = dis0;
const float *tab = sim_table_2;
for (size_t m = 0; m < pq.M; m++) {
int ci = *codes++;
dis += sim_table_ptrs [m][ci] - 2 * tab [ci];
tab += pq.ksub;
}
res.add (j, dis);
}
}
/// nothing is precomputed: access residuals on-the-fly
template<class SearchResultType>
void scan_on_the_fly_dist (size_t ncode, const uint8_t *codes,
SearchResultType &res) const
{
const float *dvec;
float dis0 = 0;
if (by_residual) {
if (METRIC_TYPE == METRIC_INNER_PRODUCT) {
ivfpq.quantizer->reconstruct (key, residual_vec);
dis0 = fvec_inner_product (residual_vec, qi, d);
} else {
ivfpq.quantizer->compute_residual (qi, residual_vec, key);
}
dvec = residual_vec;
} else {
dvec = qi;
dis0 = 0;
}
for (size_t j = 0; j < ncode; j++) {
pq.decode (codes, decoded_vec);
codes += pq.code_size;
float dis;
if (METRIC_TYPE == METRIC_INNER_PRODUCT) {
dis = dis0 + fvec_inner_product (decoded_vec, qi, d);
} else {
dis = fvec_L2sqr (decoded_vec, dvec, d);
}
res.add (j, dis);
}
}
/*****************************************************
* Scanning codes with polysemous filtering
*****************************************************/
template <class HammingComputer, class SearchResultType>
void scan_list_polysemous_hc (
size_t ncode, const uint8_t *codes,
SearchResultType & res) const
{
int ht = ivfpq.polysemous_ht;
size_t n_hamming_pass = 0, nup = 0;
int code_size = pq.code_size;
HammingComputer hc (q_code.data(), code_size);
for (size_t j = 0; j < ncode; j++) {
const uint8_t *b_code = codes;
int hd = hc.hamming (b_code);
if (hd < ht) {
n_hamming_pass ++;
float dis = dis0;
const float *tab = sim_table;
for (size_t m = 0; m < pq.M; m++) {
dis += tab[*b_code++];
tab += pq.ksub;
}
res.add (j, dis);
}
codes += code_size;
}
#pragma omp critical
{
indexIVFPQ_stats.n_hamming_pass += n_hamming_pass;
}
}
template<class SearchResultType>
void scan_list_polysemous (
size_t ncode, const uint8_t *codes,
SearchResultType &res) const
{
switch (pq.code_size) {
#define HANDLE_CODE_SIZE(cs) \
case cs: \
scan_list_polysemous_hc \
<HammingComputer ## cs, SearchResultType> \
(ncode, codes, res); \
break
HANDLE_CODE_SIZE(4);
HANDLE_CODE_SIZE(8);
HANDLE_CODE_SIZE(16);
HANDLE_CODE_SIZE(20);
HANDLE_CODE_SIZE(32);
HANDLE_CODE_SIZE(64);
#undef HANDLE_CODE_SIZE
default:
if (pq.code_size % 8 == 0)
scan_list_polysemous_hc
<HammingComputerM8, SearchResultType>
(ncode, codes, res);
else
scan_list_polysemous_hc
<HammingComputerM4, SearchResultType>
(ncode, codes, res);
break;
}
}
};
/* We put as many parameters as possible in template. Hopefully the
* gain in runtime is worth the code bloat. C is the comparator < or
* >, it is directly related to METRIC_TYPE. precompute_mode is how
* much we precompute (2 = precompute distance tables, 1 = precompute
* pointers to distances, 0 = compute distances one by one).