-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcomplete.nf
236 lines (165 loc) · 6.68 KB
/
complete.nf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#!/usr/bin/env nextflow
params.reference = 'data/genome.fasta'
params.bamfiles = 'data/bams/*.bam'
params.species = 'fungi'
params.minscaffoldsize = 1000
params.maxintronlength = 1000
params.minintronlength = 10
params.cufflinks_overlap_radius = 10
params.cufflinks_pre_mrna_fraction = 0.25
params.cufflinks_min_isoform_fraction = 0.15
// Remove small contigs.
process remove_small_scaffolds {
container 'genomicpariscentre/bioperl:1.6.924'
input:
file 'ref.fasta' from file(params.reference)
output:
file 'ref_trimmed.fasta' into ref_trimmed_for_filter_mito
"trim_fasta_all.pl -i ref.fasta -out ref_trimmed.fasta -length ${params.minscaffoldsize}"
}
// We want to remove any scaffolds that show matches to some known
// mitochondrial sequence. For the moment, the process includes a
// download of the P. nodorum mitochondrial sequence. To make the
// search more comprehensive, simply append other sequences ot the
// 'mitorhondrial.fasta' input file. For the moment, we exclude
// sequences that have mitochondrial blast hits to more than 20% of
// their length.
process filter_mitochondrial {
container 'robsyme/basics'
input:
file 'ref_trimmed.fasta' from ref_trimmed_for_filter_mito
output:
file 'nuclear_genome.fasta' into scaffolds_for_repeatmasker
file 'nuclear_genome.fasta' into scaffolds_for_gff2gb
file 'mitochondrial_genome.fasta' into scaffolds_mitochondrial
"""
curl 'http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nuccore&id=NC_009746&rettype=fasta&retmode=text' >> mitochondrial.fasta
makeblastdb -in mitochondrial.fasta -input_type fasta -dbtype nucl
samtools faidx ref_trimmed.fasta
blastn -query ref_trimmed.fasta -db mitochondrial.fasta -evalue 1 -outfmt '6 qseqid qstart qend qlen' -max_target_seqs 1 \
| awk 'BEGIN{OFS=\"\\t\"} {print \$1, \$2-1, \$3, \"hit_id_\" idcount++, \$4}' \
| sort -k1,1 -k2,2n \
| bedtools merge -i - -c 5 -o mean \
| bedtools complement -i - -g ref_trimmed.fasta.fai \
| bedtools genomecov -max 1 -i - -g ref_trimmed.fasta.fai \
| grep -v '^genome' \
| tee coverage.txt \
| awk '\$2 > 0 && \$5 > 0.8 {print \$1}' \
| xargs samtools faidx ref_trimmed.fasta \
> nuclear_genome.fasta
awk '\$2 > 0 && \$5 <= 0.8 {print \$1}' coverage.txt \
| xargs samtools faidx ref_trimmed.fasta \
> mitochondrial_genome.fasta
"""
}
// It's important to mask repetitive sequence before running automated
// gene calling software. Here we use repeatmasker and the Repbase
// database to identify and mask repetitive sequence in the nuclear
// genome.
process repeatmasker {
container 'registry.robsyme.com/repeatmasker'
input:
file 'ref.fasta' from scaffolds_for_repeatmasker
output:
file 'ref.fasta.masked' into ref_masked_for_codingquarry
"RepeatMasker -qq -frag 5000000 -gff -species ${params.species} -no_is ref.fasta"
}
// The user can supply many bam files from many conditions. For the
// purposes of gene calling, I'm going to merge them into one file for
// ease of handling. Differentiating conditions is of no use to this
// pipeline.
process merge_bams {
container 'robsyme/basics'
input:
file '*.bam' from Channel.fromPath(params.bamfiles).toList()
output:
file 'merged.bam' into bam_for_cufflinks
'samtools merge merged.bam *.bam'
}
// We would like to identify potential transcripts using cufflinks
process cufflinks {
container 'robsyme/cufflinks'
input:
file 'merged.bam' from bam_for_cufflinks
output:
file 'transcripts.gtf' into transcripts_gtf_for_codingquarry
file 'transcripts.gtf' into transcripts_gtf_for_orf_extraction
"cufflinks --overlap-radius ${params.cufflinks_overlap_radius} --pre-mrna-fraction ${params.cufflinks_pre_mrna_fraction} --min-isoform-fraction ${params.cufflinks_min_isoform_fraction} --min-intron-length ${params.minintronlength} --max-intron-length ${params.maxintronlength} merged.bam"
}
// The CodingQuarry denovo gene predictor uses intron/exon boundary
// information to improve the accuracy of gene annotation.
process codingquarry {
container 'robsyme/codingquarry:1.2'
input:
file 'ref.fasta' from ref_masked_for_codingquarry
file 'transcripts.gtf' from transcripts_gtf_for_codingquarry
output:
file 'out/PredictedPass.gff3' into codingquarry_gff_for_gff2gb
'''
CufflinksGTF_to_CodingQuarryGFF3.py transcripts.gtf > transcripts.gff
CodingQuarry -f ref.fasta -t transcripts.gff
'''
}
process extract_cufflinks_transcripts {
container 'robsyme/basics:0.7'
input:
file 'ref.fasta' from file(params.reference)
file 'transcripts.gtf' from transcripts_gtf_for_orf_extraction
output:
file 'transcripts.fasta' into cufflinks_transcripts
file 'transcripts.gff3' into cufflinks_transcripts_gff
"""
gt gtf_to_gff3 -tidy transcripts.gtf > transcripts_unsorted.gff3
gt gff3 -sort -tidy transcripts_unsorted.gff3 > transcripts.gff3
gt extractfeat -type exon -join -seqfile ref.fasta -matchdescstart transcripts.gff3 > transcripts.fasta
"""
}
// Generate a fasta file of open reading frames.
process identify_orfs {
container 'robsyme/emboss:6.6.0'
input:
file 'transcripts.fasta' from cufflinks_transcripts
output:
file 'transcript_orfs.fasta' into orfs_fasta
"getorf -sequence transcripts.fasta -outseq transcript_orfs.fasta -minsize 100 -find 0"
}
process find_pfam_domains_in_transcript_orfs {
container 'robsyme/pfam:28.0'
input:
file 'orfs.fasta' from orfs_fasta.splitFasta(by: 1000)
output:
file 'orf.domains' into transcript_orf_domains
"""
hmmscan -E 1e-5 -o orf.domains /opt/Pfam-A.hmm orfs.fasta
"""
}
process pfam_output_to_gff {
container 'robsyme/basics:0.7'
input:
file 'orf.domains' from transcript_orf_domains
file 'transcripts.gff3' from cufflinks_transcripts_gff
output:
file 'domains.gff3' into pfam_gff_hints
"""
pfam_to_gff3.rb < orf.domains > orf_domains.gff3
gff_transpose.rb --from orf_domains.gff3 --to transcripts.gff3 > domains.gff3
"""
}
// The training set for augustus requires that we supply short
// snippets of 'golden' genes which are used for training. Everything
// that is *not* identified as conding sequence is assumed to be
// non-coding. Here we take extract each of the genes +- 200 bp into
// their own genbank file. In cases where genes are separated by less
// than 200 bp, some coding sequence will be included in the neighbor,
// and will be interpreted as 'non-coding' sequence by the augustus
// training algorithm. A more sensible approach would be to divide the
process gff_to_genbank {
container 'robsyme/augustus:3.1'
input:
file 'genome.fasta' from scaffolds_for_gff2gb
file 'full_length_genes.gff' from codingquarry_gff_for_gff2gb
output:
file 'out.gb' into golden_genbank_for_training
script:
"gff2gbSmallDNA.pl full_length_genes.gff genome.fasta 200 out.gb"
}