forked from ProAlgos/ProAlgos-Cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix_chain_multiplication.hpp
202 lines (161 loc) · 5.92 KB
/
matrix_chain_multiplication.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/*
Matrix chain multiplication
---------------------------
Given a sequence of matrices, find the most efficient way to multiply these
matrices, by deciding the sequence of the matrix multiplications involved.
Time complexity
---------------
O(N^3), where N is the number of matrices.
Space complexity
----------------
O(N^2), where N is the number of matrices.
*/
#ifndef MATRIX_CHAIN_MULTIPLICATION_HPP
#define MATRIX_CHAIN_MULTIPLICATION_HPP
#include <climits>
#include <iostream>
#include <vector>
typedef unsigned long long int ull;
/*
MatrixChainMultiplier
---------------------
Wrapper class for solving the matrix chain multiplication problem.
*/
class MatrixChainMultiplier {
std::vector<size_t> matrix_sizes;
std::vector<std::vector<int>> parentheses;
std::string parenthesized_result;
ull cost;
public:
MatrixChainMultiplier();
MatrixChainMultiplier(std::vector<size_t>);
ull optimal_cost();
std::string optimal_parenthesization();
private:
ull find_optimal_cost();
void find_optimal_parenthesization(int, int, char&);
};
/*
Default constructor
-------------------
*/
MatrixChainMultiplier::MatrixChainMultiplier() {
matrix_sizes = std::vector<size_t>();
// parentheses[i][j] stores optimal break point in sub-expression from i to j
parentheses = std::vector<std::vector<int>>();
parenthesized_result = "";
cost = 0;
}
/*
Constructor
-----------
Takes a vector of unsigned integers, where the `i`th integer corresponds
to the number of columns of the `i-1`th matrix and the number of rows of
the `i`th matrix. Except for the first and last integers, which correspond
to the number of rows in the first matrix and the number of columns in the
last matrix respectively.
Eg. for a chain of matrices sized:
10x30, 30x20, 20x15, 15x35, 35x20, 20x40
the dimension vector would be:
{10, 30, 20, 15, 35, 20, 40}
*/
MatrixChainMultiplier::MatrixChainMultiplier(std::vector<size_t> dimensions) {
if (dimensions.size() < 4) {
// for the minimum of 3 matrices, 4 dimension values are required
std::invalid_argument("You need to provide at least 4 dimension values"
", as there need to be atleast 3 matrices.");
}
else if (dimensions.size() > 27) {
// a maximum of 26 matrices are supported (27 dimension values)
std::invalid_argument("You can only provide at most 27 dimension values"
", since the maximum number of matrices supported is 26.");
}
for (size_t dimension: dimensions)
if (dimension == 0) {
std::invalid_argument("A dimension is zero, which is not a valid"
"value.");
}
matrix_sizes = dimensions;
// parentheses[i][j] stores optimal break point in sub-expression from i to j
parentheses = std::vector<std::vector<int>>(dimensions.size(), std::vector<int>(dimensions.size(), 0));
parenthesized_result = "";
cost = 0;
}
/*
==========================================================================
Public interface
==========================================================================
*/
/*
optimal_cost
------------
Returns the optimal cost
*/
ull MatrixChainMultiplier::optimal_cost() {
return cost ? cost : find_optimal_cost();
}
/*
optimal_parenthesization
------------------------
Returns a string that has the optimal parenthesization of matrix chain product.
*/
std::string MatrixChainMultiplier::optimal_parenthesization() {
if (parenthesized_result == "") {
char matrix_symbol = 'A'; // matrices are named as A, B, C, ...
size_t start = 1, end = matrix_sizes.size() - 1;
find_optimal_parenthesization(start, end, matrix_symbol);
}
return parenthesized_result;
}
/*
==========================================================================
Private methods
==========================================================================
*/
/*
find_optimal_cost
-----------------
*/
ull MatrixChainMultiplier::find_optimal_cost() {
size_t num_matrices = matrix_sizes.size();
// mult_cost[i,j] is the minimum number of scalar multiplications
// needed to compute the matrix:
// A[i] x A[i+1] x ... x A[j]
std::vector<std::vector<ull>> mult_cost(num_matrices, std::vector<ull>(num_matrices, 0));
for (size_t chain_length = 2; chain_length < num_matrices; chain_length++) {
for (size_t i = 1; i < num_matrices - chain_length + 1; i++) {
size_t j = i + chain_length - 1;
mult_cost[i][j] = INT_MAX;
for (size_t k = i; k <= j - 1; k++) {
ull cost = mult_cost[i][k]
+ mult_cost[k + 1][j]
+ matrix_sizes[i - 1] * matrix_sizes[k] * matrix_sizes[j];
if (cost < mult_cost[i][j]) {
mult_cost[i][j] = cost;
parentheses[i][j] = k;
}
}
}
}
return mult_cost[1][num_matrices - 1];
}
/*
find_optimal_parenthesization
-----------------------------
Returns a string that has the optimal parenthesization of matrix chain product.
*/
void MatrixChainMultiplier::find_optimal_parenthesization(int begin, int end,
char& matrix_symbol) {
if (begin == end) { // last matrix in the current segment
parenthesized_result += matrix_symbol++;
return;
}
parenthesized_result += '(';
// recursively place the parentheses around the sub-expression
// from `begin` to `parentheses[begin][end]`
find_optimal_parenthesization(begin, parentheses[begin][end], matrix_symbol);
// from `parentheses[begin][end] + 1` to `end`
find_optimal_parenthesization(parentheses[begin][end] + 1, end, matrix_symbol);
parenthesized_result += ')';
}
#endif // MATRIX_CHAIN_MULTIPLICATION_HPP