From e797e0e41a7731e979f617ba21d81db3eecc7567 Mon Sep 17 00:00:00 2001 From: Alfonso Troya Date: Fri, 29 Nov 2019 18:43:19 +0100 Subject: [PATCH] Add OpenCV4 support --- cv_bridge/CMakeLists.txt | 2 +- cv_bridge/src/CMakeLists.txt | 4 +- cv_bridge/src/module_opencv4.cpp | 371 +++++++++++++++++++++++++++++++ 3 files changed, 375 insertions(+), 2 deletions(-) create mode 100644 cv_bridge/src/module_opencv4.cpp diff --git a/cv_bridge/CMakeLists.txt b/cv_bridge/CMakeLists.txt index 29029f565..6edd60559 100644 --- a/cv_bridge/CMakeLists.txt +++ b/cv_bridge/CMakeLists.txt @@ -37,7 +37,7 @@ else() endif() find_package(sensor_msgs REQUIRED) -find_package(OpenCV 3 REQUIRED +find_package(OpenCV REQUIRED COMPONENTS opencv_core opencv_imgproc diff --git a/cv_bridge/src/CMakeLists.txt b/cv_bridge/src/CMakeLists.txt index 1b100559d..03310caf2 100644 --- a/cv_bridge/src/CMakeLists.txt +++ b/cv_bridge/src/CMakeLists.txt @@ -41,7 +41,9 @@ if(PYTHON_VERSION_MAJOR VERSION_EQUAL 3) add_definitions(-DPYTHON3) endif() -if(OpenCV_VERSION_MAJOR VERSION_EQUAL 3) +if(OpenCV_VERSION_MAJOR VERSION_EQUAL 4) + add_library(${PROJECT_NAME}_boost module.cpp module_opencv4.cpp) +elseif(OpenCV_VERSION_MAJOR VERSION_EQUAL 3) add_library(${PROJECT_NAME}_boost module.cpp module_opencv3.cpp) else() add_library(${PROJECT_NAME}_boost module.cpp module_opencv2.cpp) diff --git a/cv_bridge/src/module_opencv4.cpp b/cv_bridge/src/module_opencv4.cpp new file mode 100644 index 000000000..4d94cd75f --- /dev/null +++ b/cv_bridge/src/module_opencv4.cpp @@ -0,0 +1,371 @@ +// Taken from opencv/modules/python/src2/cv2.cpp + +#include "module.hpp" + +#include "opencv2/core/types_c.h" + +#include "opencv2/opencv_modules.hpp" + +#include "pycompat.hpp" + +static PyObject* opencv_error = 0; + +static int failmsg(const char *fmt, ...) +{ + char str[1000]; + + va_list ap; + va_start(ap, fmt); + vsnprintf(str, sizeof(str), fmt, ap); + va_end(ap); + + PyErr_SetString(PyExc_TypeError, str); + return 0; +} + +struct ArgInfo +{ + const char * name; + bool outputarg; + // more fields may be added if necessary + + ArgInfo(const char * name_, bool outputarg_) + : name(name_) + , outputarg(outputarg_) {} + + // to match with older pyopencv_to function signature + operator const char *() const { return name; } +}; + +class PyAllowThreads +{ +public: + PyAllowThreads() : _state(PyEval_SaveThread()) {} + ~PyAllowThreads() + { + PyEval_RestoreThread(_state); + } +private: + PyThreadState* _state; +}; + +class PyEnsureGIL +{ +public: + PyEnsureGIL() : _state(PyGILState_Ensure()) {} + ~PyEnsureGIL() + { + PyGILState_Release(_state); + } +private: + PyGILState_STATE _state; +}; + +#define ERRWRAP2(expr) \ +try \ +{ \ + PyAllowThreads allowThreads; \ + expr; \ +} \ +catch (const cv::Exception &e) \ +{ \ + PyErr_SetString(opencv_error, e.what()); \ + return 0; \ +} + +using namespace cv; + +static PyObject* failmsgp(const char *fmt, ...) +{ + char str[1000]; + + va_list ap; + va_start(ap, fmt); + vsnprintf(str, sizeof(str), fmt, ap); + va_end(ap); + + PyErr_SetString(PyExc_TypeError, str); + return 0; +} + +class NumpyAllocator : public MatAllocator +{ +public: + NumpyAllocator() { stdAllocator = Mat::getStdAllocator(); } + ~NumpyAllocator() {} + + UMatData* allocate(PyObject* o, int dims, const int* sizes, int type, size_t* step) const + { + UMatData* u = new UMatData(this); + u->data = u->origdata = (uchar*)PyArray_DATA((PyArrayObject*) o); + npy_intp* _strides = PyArray_STRIDES((PyArrayObject*) o); + for( int i = 0; i < dims - 1; i++ ) + step[i] = (size_t)_strides[i]; + step[dims-1] = CV_ELEM_SIZE(type); + u->size = sizes[0]*step[0]; + u->userdata = o; + return u; + } + + UMatData* allocate(int dims0, const int* sizes, int type, void* data, size_t* step, AccessFlag flags, UMatUsageFlags usageFlags) const + { + if( data != 0 ) + { + CV_Error(Error::StsAssert, "The data should normally be NULL!"); + // probably this is safe to do in such extreme case + return stdAllocator->allocate(dims0, sizes, type, data, step, flags, usageFlags); + } + PyEnsureGIL gil; + + int depth = CV_MAT_DEPTH(type); + int cn = CV_MAT_CN(type); + const int f = (int)(sizeof(size_t)/8); + int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE : + depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT : + depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT : + depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT; + int i, dims = dims0; + cv::AutoBuffer _sizes(dims + 1); + for( i = 0; i < dims; i++ ) + _sizes[i] = sizes[i]; + if( cn > 1 ) + _sizes[dims++] = cn; + PyObject* o = PyArray_SimpleNew(dims, _sizes.data(), typenum); + if(!o) + CV_Error_(Error::StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims)); + return allocate(o, dims0, sizes, type, step); + } + + bool allocate(UMatData* u, AccessFlag accessFlags, UMatUsageFlags usageFlags) const CV_OVERRIDE + { + return stdAllocator->allocate(u, accessFlags, usageFlags); + } + + void deallocate(UMatData* u) const CV_OVERRIDE + { + if(!u) + return; + PyEnsureGIL gil; + CV_Assert(u->urefcount >= 0); + CV_Assert(u->refcount >= 0); + if(u->refcount == 0) + { + PyObject* o = (PyObject*)u->userdata; + Py_XDECREF(o); + delete u; + } + } + + const MatAllocator* stdAllocator; +}; + +NumpyAllocator g_numpyAllocator; + + +template static +bool pyopencv_to(PyObject* obj, T& p, const char* name = ""); + +template static +PyObject* pyopencv_from(const T& src); + +enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 }; + +// special case, when the convertor needs full ArgInfo structure +static bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo info) +{ + // to avoid PyArray_Check() to crash even with valid array + do_numpy_import( ); + + + bool allowND = true; + if(!o || o == Py_None) + { + if( !m.data ) + m.allocator = &g_numpyAllocator; + return true; + } + + if( PyInt_Check(o) ) + { + double v[] = {(double)PyInt_AsLong((PyObject*)o), 0., 0., 0.}; + m = Mat(4, 1, CV_64F, v).clone(); + return true; + } + if( PyFloat_Check(o) ) + { + double v[] = {PyFloat_AsDouble((PyObject*)o), 0., 0., 0.}; + m = Mat(4, 1, CV_64F, v).clone(); + return true; + } + if( PyTuple_Check(o) ) + { + int i, sz = (int)PyTuple_Size((PyObject*)o); + m = Mat(sz, 1, CV_64F); + for( i = 0; i < sz; i++ ) + { + PyObject* oi = PyTuple_GET_ITEM(o, i); + if( PyInt_Check(oi) ) + m.at(i) = (double)PyInt_AsLong(oi); + else if( PyFloat_Check(oi) ) + m.at(i) = (double)PyFloat_AsDouble(oi); + else + { + failmsg("%s is not a numerical tuple", info.name); + m.release(); + return false; + } + } + return true; + } + + if( !PyArray_Check(o) ) + { + failmsg("%s is not a numpy array, neither a scalar", info.name); + return false; + } + + PyArrayObject* oarr = (PyArrayObject*) o; + + bool needcopy = false, needcast = false; + int typenum = PyArray_TYPE(oarr), new_typenum = typenum; + int type = typenum == NPY_UBYTE ? CV_8U : + typenum == NPY_BYTE ? CV_8S : + typenum == NPY_USHORT ? CV_16U : + typenum == NPY_SHORT ? CV_16S : + typenum == NPY_INT ? CV_32S : + typenum == NPY_INT32 ? CV_32S : + typenum == NPY_FLOAT ? CV_32F : + typenum == NPY_DOUBLE ? CV_64F : -1; + + if( type < 0 ) + { + if( typenum == NPY_INT64 || typenum == NPY_UINT64 || type == NPY_LONG ) + { + needcopy = needcast = true; + new_typenum = NPY_INT; + type = CV_32S; + } + else + { + failmsg("%s data type = %d is not supported", info.name, typenum); + return false; + } + } + +#ifndef CV_MAX_DIM + const int CV_MAX_DIM = 32; +#endif + + int ndims = PyArray_NDIM(oarr); + if(ndims >= CV_MAX_DIM) + { + failmsg("%s dimensionality (=%d) is too high", info.name, ndims); + return false; + } + + int size[CV_MAX_DIM+1]; + size_t step[CV_MAX_DIM+1]; + size_t elemsize = CV_ELEM_SIZE1(type); + const npy_intp* _sizes = PyArray_DIMS(oarr); + const npy_intp* _strides = PyArray_STRIDES(oarr); + bool ismultichannel = ndims == 3 && _sizes[2] <= CV_CN_MAX; + + for( int i = ndims-1; i >= 0 && !needcopy; i-- ) + { + // these checks handle cases of + // a) multi-dimensional (ndims > 2) arrays, as well as simpler 1- and 2-dimensional cases + // b) transposed arrays, where _strides[] elements go in non-descending order + // c) flipped arrays, where some of _strides[] elements are negative + if( (i == ndims-1 && (size_t)_strides[i] != elemsize) || + (i < ndims-1 && _strides[i] < _strides[i+1]) ) + needcopy = true; + } + + if( ismultichannel && _strides[1] != (npy_intp)elemsize*_sizes[2] ) + needcopy = true; + + if (needcopy) + { + if (info.outputarg) + { + failmsg("Layout of the output array %s is incompatible with cv::Mat (step[ndims-1] != elemsize or step[1] != elemsize*nchannels)", info.name); + return false; + } + + if( needcast ) { + o = PyArray_Cast(oarr, new_typenum); + oarr = (PyArrayObject*) o; + } + else { + oarr = PyArray_GETCONTIGUOUS(oarr); + o = (PyObject*) oarr; + } + + _strides = PyArray_STRIDES(oarr); + } + + for(int i = 0; i < ndims; i++) + { + size[i] = (int)_sizes[i]; + step[i] = (size_t)_strides[i]; + } + + // handle degenerate case + if( ndims == 0) { + size[ndims] = 1; + step[ndims] = elemsize; + ndims++; + } + + if( ismultichannel ) + { + ndims--; + type |= CV_MAKETYPE(0, size[2]); + } + + if( ndims > 2 && !allowND ) + { + failmsg("%s has more than 2 dimensions", info.name); + return false; + } + + m = Mat(ndims, size, type, PyArray_DATA(oarr), step); + m.u = g_numpyAllocator.allocate(o, ndims, size, type, step); + m.addref(); + + if( !needcopy ) + { + Py_INCREF(o); + } + m.allocator = &g_numpyAllocator; + + return true; +} + +template<> +bool pyopencv_to(PyObject* o, Mat& m, const char* name) +{ + return pyopencv_to(o, m, ArgInfo(name, 0)); +} + +PyObject* pyopencv_from(const Mat& m) +{ + if( !m.data ) + Py_RETURN_NONE; + Mat temp, *p = (Mat*)&m; + if(!p->u || p->allocator != &g_numpyAllocator) + { + temp.allocator = &g_numpyAllocator; + ERRWRAP2(m.copyTo(temp)); + p = &temp; + } + PyObject* o = (PyObject*)p->u->userdata; + Py_INCREF(o); + return o; +} + +int convert_to_CvMat2(const PyObject* o, cv::Mat& m) +{ + pyopencv_to(const_cast(o), m, "unknown"); + return 0; +} \ No newline at end of file