-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
154 lines (114 loc) · 5.17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import sys
sys.path.append('../../')
import tensorflow as tf
from model.lm.dataloader import input_fn_builder
from model.lm.modeling import model_fn_builder, LMConfig
flags = tf.flags
FLAGS = flags.FLAGS
## Required parameters
flags.DEFINE_string(
"config_file", 'configs/base.json',
"The config json file corresponding to the pre-trained news model. "
"This specifies the model architecture.")
flags.DEFINE_string(
"input_file", None,
"Input TF example files (can be a glob or comma separated).")
flags.DEFINE_string(
"output_dir", None,
"The output directory where the model checkpoints will be written.")
## Other parameters
flags.DEFINE_string(
"init_checkpoint", None,
"Initial checkpoint (usually from a pre-trained model).")
flags.DEFINE_integer(
"max_seq_length", 1024,
"The maximum total input sequence length after BPE tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded. Must match data generation.")
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for adafactor.")
flags.DEFINE_float("target_bonus", 4.0, "Multiply loss on the target section of seq2seq")
flags.DEFINE_integer("num_train_steps", 100000, "Number of training steps.")
flags.DEFINE_integer("num_warmup_steps", 10000, "Number of warmup steps.")
flags.DEFINE_integer("save_checkpoints_steps", 1000,
"How often to save the model checkpoint.")
flags.DEFINE_integer("iterations_per_loop", 1000,
"How many steps to make in each estimator call.")
flags.DEFINE_integer("max_eval_steps", 100, "Maximum number of eval steps.")
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
flags.DEFINE_bool("bidirectional", False, "USE BIDIRECTIONAL (BERT).")
flags.DEFINE_bool("do_l2r_also", False, "do l2r also")
flags.DEFINE_string(
"tpu_name", None,
"The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
flags.DEFINE_string(
"tpu_zone", None,
"[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
flags.DEFINE_string(
"gcp_project", None,
"[Optional] Project name for the Cloud TPU-enabled project. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
flags.DEFINE_integer(
"num_tpu_cores", 8,
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
news_config = LMConfig.from_json_file(FLAGS.config_file)
tf.gfile.MakeDirs(FLAGS.output_dir)
input_files = []
for input_pattern in FLAGS.input_file.split(","):
input_files.extend(tf.gfile.Glob(input_pattern))
tf.logging.info("*** Input Files ***")
for input_file in input_files:
tf.logging.info(" %s" % input_file)
tpu_cluster_resolver = None
if FLAGS.use_tpu and FLAGS.tpu_name:
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
master=FLAGS.master,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
keep_checkpoint_max=None,
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.num_tpu_cores,
per_host_input_for_training=is_per_host))
model_fn = model_fn_builder(news_config, init_checkpoint=FLAGS.init_checkpoint,
learning_rate=FLAGS.learning_rate,
num_train_steps=FLAGS.num_train_steps,
num_warmup_steps=FLAGS.num_warmup_steps,
use_tpu=FLAGS.use_tpu,
target_bonus=FLAGS.target_bonus,
)
# If TPU is not available, this will fall back to normal Estimator on CPU
# or GPU.
estimator = tf.contrib.tpu.TPUEstimator(
use_tpu=FLAGS.use_tpu,
model_fn=model_fn,
config=run_config,
train_batch_size=FLAGS.train_batch_size,
eval_batch_size=FLAGS.train_batch_size,
params={'model_dir': FLAGS.output_dir}
)
tf.logging.info("***** Running training *****")
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
train_input_fn = input_fn_builder(
input_file=FLAGS.input_file,
seq_length=FLAGS.max_seq_length,
is_training=True,
do_l2r_also=FLAGS.do_l2r_also,
)
estimator.train(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps)
if __name__ == "__main__":
flags.mark_flag_as_required("input_file")
flags.mark_flag_as_required("output_dir")
tf.app.run()