-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBase.agda
531 lines (445 loc) · 18.3 KB
/
Base.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
{-# OPTIONS --without-K #-}
module Base where
open import Agda.Primitive
open import Agda.Builtin.Sigma public
open import Agda.Builtin.Equality public
open import Agda.Builtin.Unit public
open import Agda.Builtin.Bool public
open import Agda.Builtin.Nat hiding (_<_) public
variable
l1 l2 l3 l4 l5 l6 : Level
infixr 6 _×_
_×_ : (X : Set l1) → (Y : Set l2) → Set (l1 ⊔ l2)
X × Y = Σ X (λ _ → Y)
data ⊥ : Set where
module _ {X : Set l1} where
rec⊥ : ⊥ → X
rec⊥ ()
module _ {X : Set l1} {Y : Set l2} (f : X → Y) where
ap : {x1 x2 : X} → x1 ≡ x2 → f x1 ≡ f x2
ap refl = refl
module _ {X : Set l1} where
infixr 8 _◾_
_◾_ : {x1 x2 : X} → x1 ≡ x2 → {x3 : X} → x2 ≡ x3 → x1 ≡ x3
refl ◾ refl = refl
◾unitr : {x1 x2 : X} → {e : x1 ≡ x2} → e ◾ refl ≡ e
◾unitr {e = refl} = refl
◾unitl : {x1 x2 : X} → {e : x1 ≡ x2} → refl ◾ e ≡ e
◾unitl {e = refl} = refl
infixr 5 _⊎_
data _⊎_ {l1 l2} (X : Set l1) (Y : Set l2) : Set (l1 ⊔ l2) where
inl : X → X ⊎ Y
inr : Y → X ⊎ Y
infix 4 _≃_
record _≃_ (X : Set l1) (Y : Set l2) : Set (l1 ⊔ l2) where
constructor biinv
field
f : X → Y
g : Y → X
η : (x : X) → g (f x) ≡ x
h : Y → X
ε : (y : Y) → f (h y) ≡ y
open _≃_ public
ide : (X : Set l1) → X ≃ X
f (ide X) x = x
g (ide X) = f (ide X)
η (ide X) x = refl
h (ide X) = g (ide X)
ε (ide X) x = refl
module _ {X : Set l1} where
infix 10 !
! : {x1 x2 : X} → x1 ≡ x2 → x2 ≡ x1
! refl = refl
!-eqv : {x1 x2 : X} → (x1 ≡ x2) ≃ (x2 ≡ x1)
f !-eqv = !
g !-eqv = !
η !-eqv refl = refl
h !-eqv = g !-eqv
ε !-eqv = η !-eqv
!! : {x1 x2 : X} → {e : x1 ≡ x2} → ! (! e) ≡ e
!! {e = e} = η !-eqv e
module _ {X : Set l1} (P : X → Set l2) where
tpt-eqv : {x1 x2 : X} → (e : x1 ≡ x2) → P x1 ≃ P x2
f (tpt-eqv refl) p = p
g (tpt-eqv e) p = f (tpt-eqv (! e)) p
η (tpt-eqv refl) p = refl
h (tpt-eqv e) = g (tpt-eqv e)
ε (tpt-eqv refl) p = refl
tpt : {x1 x2 : X} → (e : x1 ≡ x2) → P x1 → P x2
tpt e = f (tpt-eqv e)
module _ {X : Set l1} (P : X → Set l2) (f : (x : X) → P x) where
apd : {x1 x2 : X} → (e : x1 ≡ x2) → tpt P e (f x1) ≡ f x2
apd refl = refl
module _ {X : Set l1} {Y : Set l2} (Q : X → Y → Set l3) where
tpt2-cart-eqv : {x1 x2 : X} → (e1 : x1 ≡ x2) →
{y1 y2 : Y} → (e2 : y1 ≡ y2) →
Q x1 y1 ≃ Q x2 y2
f (tpt2-cart-eqv refl refl) q = q
g (tpt2-cart-eqv e1 e2) = f (tpt2-cart-eqv (! e1) (! e2))
η (tpt2-cart-eqv refl refl) q = refl
h (tpt2-cart-eqv e1 e2) = g (tpt2-cart-eqv e1 e2)
ε (tpt2-cart-eqv refl refl) q = refl
module _ {X : Set l1} where
lcomp-eqv : {x1 x2 : X} → (e1 : x1 ≡ x2) → {x3 : X} → (x2 ≡ x3) ≃ (x1 ≡ x3)
f (lcomp-eqv e1) e2 = e1 ◾ e2
g (lcomp-eqv e1) e2 = ! e1 ◾ e2
η (lcomp-eqv refl) refl = refl
h (lcomp-eqv e1) = g (lcomp-eqv e1)
ε (lcomp-eqv refl) refl = refl
lcomp-τ : {x1 x2 : X} → (e1 : x1 ≡ x2) → {x3 : X} → (e2 : x2 ≡ x3) →
ap (f (lcomp-eqv e1)) (η (lcomp-eqv e1) e2) ≡
ε (lcomp-eqv e1) (f (lcomp-eqv e1) e2)
lcomp-τ refl refl = refl
lcomp-ν : {x1 x2 : X} → (e1 : x1 ≡ x2) → {x3 : X} → (e2 : x1 ≡ x3) →
ap (g (lcomp-eqv e1)) (ε (lcomp-eqv e1) e2) ≡
η (lcomp-eqv e1) (g (lcomp-eqv e1) e2)
lcomp-ν refl refl = refl
lwhisk-coh : {x1 x2 : X} → {e1 e2 : x1 ≡ x2} → (e4 : e1 ≡ e2) →
ap (λ e2 → refl ◾ e2) e4 ≡
f (tpt2-cart-eqv (λ x1 x2 → x1 ≡ x2) (! ◾unitl) (! ◾unitl)) e4
lwhisk-coh {e1 = refl} refl = refl
lwhisk-eqv : {x1 x2 : X} → {e1 : x1 ≡ x2} →
{x3 : X} → {e2 e3 : x2 ≡ x3} →
(e2 ≡ e3) ≃ (e1 ◾ e2 ≡ e1 ◾ e3)
f (lwhisk-eqv {e1 = e1}) = ap (f (lcomp-eqv e1))
g (lwhisk-eqv {e1 = refl}) =
g (tpt2-cart-eqv (λ x1 x2 → x1 ≡ x2) (! ◾unitl) (! ◾unitl))
η (lwhisk-eqv {e1 = refl}) e4 =
ap (f (tpt2-cart-eqv _≡_ (! (! ◾unitl)) (! (! ◾unitl)))) (lwhisk-coh e4) ◾
η (tpt2-cart-eqv (λ x1 x2 → x1 ≡ x2) (! ◾unitl) (! ◾unitl)) e4
h lwhisk-eqv = g (lwhisk-eqv)
ε (lwhisk-eqv {e1 = refl}) e4 =
lwhisk-coh (f (tpt2-cart-eqv _≡_ (! (! ◾unitl)) (! (! ◾unitl))) e4) ◾
ε (tpt2-cart-eqv (λ x1 x2 → x1 ≡ x2) (! ◾unitl) (! ◾unitl)) e4
lwhisk-τ : {x1 x2 : X} → {e1 : x1 ≡ x2} →
{x3 : X} → {e2 e3 : x2 ≡ x3} →
(e4 : e2 ≡ e3) →
ap (f (lwhisk-eqv {e1 = e1})) (η (lwhisk-eqv {e1 = e1}) e4) ≡
ε lwhisk-eqv (f lwhisk-eqv e4)
lwhisk-τ {e1 = refl} {e2 = refl} refl = refl
rcomp-eqv : {x1 x2 : X} → (e1 : x1 ≡ x2) → {x3 : X} → (x3 ≡ x1) ≃ (x3 ≡ x2)
f (rcomp-eqv e1) e2 = e2 ◾ e1
g (rcomp-eqv e1) e2 = e2 ◾ ! e1
η (rcomp-eqv refl) refl = refl
h (rcomp-eqv e1) = g (rcomp-eqv e1)
ε (rcomp-eqv refl) refl = refl
rwhisk-coh : {x1 x2 : X} → {e1 e2 : x1 ≡ x2} → (e4 : e1 ≡ e2) →
ap (λ e2 → e2 ◾ refl) e4 ≡
f (tpt2-cart-eqv (λ x1 x2 → x1 ≡ x2) (! ◾unitr) (! ◾unitr)) e4
rwhisk-coh {e1 = refl} refl = refl
rwhisk-eqv : {x1 x2 : X} → {e1 : x1 ≡ x2} →
{x3 : X} → {e2 e3 : x3 ≡ x1} →
(e2 ≡ e3) ≃ (e2 ◾ e1 ≡ e3 ◾ e1)
f (rwhisk-eqv {e1 = e1}) = ap (f (rcomp-eqv e1))
g (rwhisk-eqv {e1 = refl}) =
g (tpt2-cart-eqv (λ x1 x2 → x1 ≡ x2) (! ◾unitr) (! ◾unitr))
η (rwhisk-eqv {e1 = refl}) e4 =
ap (f (tpt2-cart-eqv _≡_ (! (! ◾unitr)) (! (! ◾unitr)))) (rwhisk-coh e4) ◾
η (tpt2-cart-eqv (λ x1 x2 → x1 ≡ x2) (! ◾unitr) (! ◾unitr)) e4
h rwhisk-eqv = g (rwhisk-eqv)
ε (rwhisk-eqv {e1 = refl}) e4 =
rwhisk-coh (f (tpt2-cart-eqv _≡_ (! (! ◾unitr)) (! (! ◾unitr))) e4) ◾
ε (tpt2-cart-eqv (λ x1 x2 → x1 ≡ x2) (! ◾unitr) (! ◾unitr)) e4
module _ {X : Set l1} {P : X → Set l2} where
ap-snd : {x1 x2 : X} → {p1 : P x1} → {p2 : P x2} →
(e : _≡_ {A = Σ X P} (x1 , p1) (x2 , p2)) →
tpt P (ap fst e) p1 ≡ p2
ap-snd refl = refl
module _ {X : Set l1} {x0 : X} where
tpt-const-eq-var : {x1 x2 : X} → (e1 : x1 ≡ x2) → (e2 : x0 ≡ x1) →
tpt (λ x → x0 ≡ x) e1 e2 ≡ e2 ◾ e1
tpt-const-eq-var refl refl = refl
tpt-var-eq-const : {x1 x2 : X} → (e1 : x1 ≡ x2) → (e2 : x1 ≡ x0) →
tpt (λ x → x ≡ x0) e1 e2 ≡ ! e1 ◾ e2
tpt-var-eq-const refl refl = refl
module _ {X : Set l1} {Y : Set l2}
{f : X → Y} {g : Y → X}
(η : (x : X) → g (f x) ≡ x)
where
inv-sq : {x1 x2 : X} → (e1 : x1 ≡ x2) →
! (η x1) ◾ ap g (ap f e1) ◾ η x2 ≡ e1
inv-sq {x1} = coh2
module inv-sq where
coh1 : {x1 x2 : X} → (e : x1 ≡ x2) → ! e ◾ refl ◾ e ≡ refl
coh1 refl = refl
coh2 = λ { refl → coh1 (η _) }
inv-comm : (x : X) → ap g (ap f (η x)) ≡ η (g (f x))
inv-comm x1 = _≃_.g rwhisk-eqv (coh (η x1))
module inv-comm where
coh : {x1 x2 : X} → (e1 : x1 ≡ x2) → ap g (ap f e1) ◾ η x2 ≡ η x1 ◾ e1
coh refl = ◾unitl ◾ ! ◾unitr
module _ where
is-contr : Set l1 → Set l1
is-contr X = Σ X (λ x0 → (x : X) → x ≡ x0)
is-prop : Set l1 → Set l1
is-prop X = (x1 x2 : X) → x1 ≡ x2
is-set : Set l1 → Set l1
is-set X = {x1 x2 : X} → (e1 e2 : x1 ≡ x2) → e1 ≡ e2
module _ where
prop-is-set : {X : Set l1} → is-prop X → is-set X
prop-is-set ϕ {x1} {x2} e1 e2 =
g lwhisk-eqv
(! (tpt-const-eq-var e1 (ϕ x1 x1)) ◾
apd _ (ϕ x1) e1 ◾
! (apd _ (ϕ x1) e2)
◾ tpt-const-eq-var e2 (ϕ x1 x1))
module _ {X : Set l1} {P : X → Set l2} where
pair-eqv : {x1 x2 : X} → {p1 : P x1} → {p2 : P x2} →
(Σ (x1 ≡ x2) (λ p → tpt P p p1 ≡ p2)) ≃
((x1 , p1) ≡ (x2 , p2))
f pair-eqv (refl , refl) = refl
g pair-eqv e1 = ap fst e1 , ap-snd e1
η pair-eqv (refl , refl) = refl
h pair-eqv = g pair-eqv
ε pair-eqv refl = refl
pair-eq = λ {x1} {x2} {p1} {p2} → f (pair-eqv {x1} {x2} {p1} {p2})
module _ {X : Set l1} {Y : Set l2} where
cart-pair-eqv : {x1 x2 : X} → {y1 y2 : Y} →
((x1 ≡ x2) × (y1 ≡ y2)) ≃ ((x1 , y1) ≡ (x2 , y2))
f cart-pair-eqv (refl , refl) = refl
g cart-pair-eqv e1 = ap fst e1 , ap snd e1
η cart-pair-eqv (refl , refl) = refl
h cart-pair-eqv = g cart-pair-eqv
ε cart-pair-eqv refl = refl
cart-pair-eq = λ {x1} {x2} {y1} {y2} → f (cart-pair-eqv {x1} {x2} {y1} {y2})
module EquivCoh {X : Set l1} {Y : Set l2} where
ε' : (e : X ≃ Y) → (y : Y) → f e (g e y) ≡ y
ε' e y = ! (ap (λ y → f e (g e y)) (ε e y)) ◾ ap (f e) (η e (h e y)) ◾ ε e y
η' : (e : X ≃ Y) → (x : X) → h e (f e x) ≡ x
η' e x = ! (η e (h e (f e x))) ◾ ap (g e) (ε e (f e x)) ◾ η e x
open EquivCoh public
module _ {X : Set l1} {Y : Set l2} {Z : Set l3}
(e1 : Y ≃ Z) (e2 : X ≃ Y)
where
infixr 5 _∘e_
_∘e_ : X ≃ Z
f _∘e_ x = f e1 (f e2 x)
g _∘e_ z = g e2 (g e1 z)
η _∘e_ x = ap (g e2) (η e1 (f e2 x)) ◾ η e2 x
h _∘e_ z = h e2 (h e1 z)
ε _∘e_ z = ap (f e1) (ε e2 (h e1 z)) ◾ ε e1 z
module _ {X : Set l1} {Y : Set l2} (e : X ≃ Y) where
!e : Y ≃ X
f !e = g e
g !e = f e
η !e = ε' e
h !e = f e
ε !e = η e
module _ {X : Set l1} {P : X → Set l2} {f g : (x : X) → P x} where
postulate
funext : ((x : X) → f x ≡ g x) → f ≡ g
funext-happly : (e : f ≡ g) → funext (λ x → ap (λ f → f x) e) ≡ e
happly-funext : (ϕ : ((x : X) → f x ≡ g x)) →
(λ x → ap (λ f → f x) (funext ϕ)) ≡ ϕ
happly-eqv : (f ≡ g) ≃ ((x : X) → f x ≡ g x)
_≃_.f happly-eqv e x = ap (λ a → a x) e
_≃_.g happly-eqv = funext
_≃_.η happly-eqv = funext-happly
_≃_.h happly-eqv = _≃_.g happly-eqv
_≃_.ε happly-eqv = happly-funext
module _ {X : Set l1} where
contr-is-prop : is-contr X → is-prop X
contr-is-prop (x , ϕ) x1 x2 = ϕ x1 ◾ ! (ϕ x2)
module _ {X : Set l1} where
is-contr-is-contr : is-contr X → is-contr (is-contr X)
is-contr-is-contr (x0 , ϕ0) =
(x0 , ϕ0) ,
(λ {(x1 , ϕ1) →
pair-eq
(ϕ0 x1 ,
funext (λ x2 →
prop-is-set
(contr-is-prop (x0 , ϕ0))
(tpt (λ x3 → (x : X) → x ≡ x3) (ϕ0 x1) ϕ1 x2) (ϕ0 x2))) })
module _ {X : Set l1} {Y : Set l2} (e : X ≃ Y) where
is-contr-eqv : (is-contr X) ≃ (is-contr Y)
f is-contr-eqv (x , ϕ) =
f e x , (λ y → ! (ε e y) ◾ ! (ap (f e) (! (ϕ (h e y)))))
g is-contr-eqv (y , ϕ) =
g e y , (λ x → ! (η e x) ◾ ! (ap (g e) (! (ϕ (h (!e e) x)))))
η is-contr-eqv (x , ϕ) = snd (is-contr-is-contr (x , ϕ)) (_ , _)
h is-contr-eqv = g is-contr-eqv
ε is-contr-eqv (y , ϕ) = snd (is-contr-is-contr (y , ϕ)) (_ , _)
module _ {X : Set l1}
{P : X → Set l2} {Q : X → Set l3}
(ϕ : (x : X) → P x ≃ Q x)
where
sigma-eqv-2 : (Σ X P) ≃ (Σ X Q)
f sigma-eqv-2 (x , p) = x , f (ϕ x) p
g sigma-eqv-2 (x , q) = x , g (ϕ x) q
η sigma-eqv-2 (x , p) = pair-eq (refl , η (ϕ x) p)
h sigma-eqv-2 (x , q) = x , h (ϕ x) q
ε sigma-eqv-2 (x , q) = pair-eq (refl , ε (ϕ x) q)
-----------
module _ {X : Set l1} {Y : Set l2} {Z : Set l3} where
flip-eqv : (X → Y → Z) ≃ (Y → X → Z)
f flip-eqv k y x = k x y
g flip-eqv k x y = k y x
η flip-eqv k = refl
h flip-eqv = g flip-eqv
ε flip-eqv k = refl
flip : (X → Y → Z) → (Y → X → Z)
flip = f flip-eqv
module _ {X : Set l1} {Y : Set l2}
(f : X → Y) (g : Y → X)
(η : (x : X) → g (f x) ≡ x)
(ε : (y : Y) → f (g y) ≡ y)
where
qinv-is-cfn : (y : Y) → is-contr (Σ X (λ x → f x ≡ y))
fst (qinv-is-cfn y) = g y , ε y
snd (qinv-is-cfn y) (x , e) =
pair-eq (! (η x) ◾ ! (ap g (ε (f x))) ◾ ap g (ap f (η x)) ◾ ap g e ,
coh1 (η x) (ap g (ε (f x))) (ap g (ap f (η x))) (ap g e) e ◾
coh2 e (η x))
module qinv-is-cfn where
coh1 : {x1 x2 x3 x4 x5 : X} → {y1 : Y} →
(p1 : x1 ≡ x2) → (p2 : x3 ≡ x1) → (p3 : x3 ≡ x4) →
(p4 : x4 ≡ x5) → (p5 : f x2 ≡ y1) →
tpt (λ x → f x ≡ y1) (! p1 ◾ ! p2 ◾ p3 ◾ p4) p5 ≡
! (ap f p4) ◾ ! (ap f p3) ◾ ap f p2 ◾ ap f p1 ◾ p5
coh1 refl refl refl refl refl = refl
coh2 : {x1 x2 : X} → {y1 : Y} →
(e1 : f x2 ≡ y1) →
(e2 : g (f x1) ≡ x2) →
! (ap f (ap g e1)) ◾
! (ap f (ap g (ap f e2))) ◾
ap f (ap g (ε (f x1))) ◾
ap f e2 ◾
e1 ≡ ε y1
coh2 {x1} refl refl = ◾unitl ◾ ◾unitl ◾ ◾unitr ◾ inv-comm ε (f x1)
module _ {W : Set l1} {X : Set l2} {Y : Set l3} where
qinv-is-cfn-2 : (k1 : W → X → Y) → (k2 : W → Y) →
(k3 : (W → Y) → X) →
(ϕ1 : (x : X) → k3 (λ w → k1 w x) ≡ x) →
(ϕ2 : (k2 : W → Y) → (λ w → k1 w (k3 k2)) ≡ k2) →
is-contr (Σ X (λ x → (w : W) → k1 w x ≡ k2 w))
qinv-is-cfn-2 k1 k2 k3 ϕ1 ϕ2 =
f (is-contr-eqv (sigma-eqv-2 (λ _ → happly-eqv)))
(qinv-is-cfn (flip k1) k3 ϕ1 ϕ2 k2)
module _ {X : Set l1} {Y : Set l2} where
biinv-eq : {e1 e2 : X ≃ Y} → f e1 ≡ f e2 → e1 ≡ e2
biinv-eq {e1@(biinv _ g1 η1 h1 ε1)} {biinv f2 g2 η2 h2 ε2} refl =
ap (λ w → biinv f2 (fst w) (snd w) h1 ε1)
(contr-is-prop
(qinv-is-cfn-2
(λ x g → g (f2 x)) (λ x → x) (λ k y → k (h1 y))
(λ g3 → funext (λ y → ap g3 (ε1 y)))
(λ k → funext (λ x → ap k (η' e1 x)))) _ _) ◾
ap (λ w → biinv f2 g2 η2 (fst w) (snd w))
(contr-is-prop
(qinv-is-cfn-2
(λ y h → f2 (h y)) (λ x → x) (λ k y → g1 (k y))
(λ g3 → funext (λ y → η1 (g3 y)))
(λ k → funext (λ y → ε' e1 (k y)))) _ _)
----------
module _ {W : Set l1} {X : Set l2} {Y : Set l3} {Z : Set l4}
(e1 : Y ≃ Z) (e2 : X ≃ Y) (e3 : W ≃ X) where
∘e-assoc : (e1 ∘e e2) ∘e e3 ≡ e1 ∘e e2 ∘e e3
∘e-assoc = biinv-eq refl
module _ {X : Set l1} {Y : Set l2} (e : X ≃ Y) where
∘e-unitl : ide Y ∘e e ≡ e
∘e-unitl = biinv-eq refl
∘e-unitr : e ∘e ide X ≡ e
∘e-unitr = biinv-eq refl
∘e-invl : !e e ∘e e ≡ ide X
∘e-invl = biinv-eq (funext (η e))
∘e-invr : e ∘e !e e ≡ ide Y
∘e-invr = biinv-eq (funext (ε' e))
module _ {X : Set l1} {Y : Set l2} {Z : Set l3} (e1 : X ≃ Y) where
∘e-precomp-eqv : (Y ≃ Z) ≃ (X ≃ Z)
f ∘e-precomp-eqv e2 = e2 ∘e e1
g ∘e-precomp-eqv e2 = e2 ∘e !e e1
η ∘e-precomp-eqv e2 =
∘e-assoc e2 e1 (!e e1) ◾
ap (λ e → e2 ∘e e) (∘e-invr e1) ◾
∘e-unitr e2
h ∘e-precomp-eqv = g ∘e-precomp-eqv
ε ∘e-precomp-eqv e2 =
∘e-assoc e2 (!e e1) e1 ◾
ap (λ e → e2 ∘e e) (∘e-invl e1) ◾
∘e-unitr e2
module _ {X : Set l1} {Y : Set l2} {Z : Set l3} (e1 : Y ≃ Z) where
∘e-postcomp-eqv : (X ≃ Y) ≃ (X ≃ Z)
f ∘e-postcomp-eqv e2 = e1 ∘e e2
g ∘e-postcomp-eqv e2 = !e e1 ∘e e2
η ∘e-postcomp-eqv e2 =
! (∘e-assoc (!e e1) e1 e2) ◾
ap (λ e → e ∘e e2) (∘e-invl e1) ◾
∘e-unitl e2
h ∘e-postcomp-eqv = g ∘e-postcomp-eqv
ε ∘e-postcomp-eqv e2 =
! (∘e-assoc e1 (!e e1) e2) ◾
ap (λ e → e ∘e e2) (∘e-invr e1) ◾
∘e-unitl e2
module _ {W : Set l1} {X : Set l2} {Y : Set l3} {Z : Set l4}
(e1 : W ≃ X) (e2 : Y ≃ Z)
where
∘e-bicomp-eqv : (X ≃ Y) ≃ (W ≃ Z)
∘e-bicomp-eqv = ∘e-postcomp-eqv e2 ∘e ∘e-precomp-eqv e1
module _ {X1 : Set l1} {X2 : Set l2} {Y1 : Set l3} {Y2 : Set l4}
(e1 : X1 ≃ Y1) (e2 : X2 ≃ Y2) where
infixr 6 _×e_
_×e_ : (X1 × X2) ≃ (Y1 × Y2)
f _×e_ (x1 , x2) = f e1 x1 , f e2 x2
g _×e_ (y1 , y2) = g e1 y1 , g e2 y2
η _×e_ (x1 , x2) = cart-pair-eq (η e1 x1 , η e2 x2)
h _×e_ (y1 , y2) = h e1 y1 , h e2 y2
ε _×e_ (y1 , y2) = cart-pair-eq (ε e1 y1 , ε e2 y2)
module _ {X : Set l1} {Y : Set l2} (n : X → ⊥) where
⊎-unitl : (X ⊎ Y) ≃ Y
f ⊎-unitl (inl x) = rec⊥ (n x)
f ⊎-unitl (inr y) = y
g ⊎-unitl = inr
η ⊎-unitl (inl x) = rec⊥ (n x)
η ⊎-unitl (inr y) = refl
h ⊎-unitl = g ⊎-unitl
ε ⊎-unitl _ = refl
module _ {X : Set l1} {Y : Set l2} (n : Y → ⊥) where
⊎-unitr : (X ⊎ Y) ≃ X
f ⊎-unitr (inl x) = x
f ⊎-unitr (inr y) = rec⊥ (n y)
g ⊎-unitr = inl
η ⊎-unitr (inl x) = refl
η ⊎-unitr (inr y) = rec⊥ (n y)
h ⊎-unitr = g ⊎-unitr
ε ⊎-unitr _ = refl
module _ {X : Set l1} {Y : Set l2} {Z : Set l3} where
⊎-assoc : ((X ⊎ Y) ⊎ Z) ≃ (X ⊎ Y ⊎ Z)
f ⊎-assoc (inl (inl x)) = inl x
f ⊎-assoc (inl (inr y)) = inr (inl y)
f ⊎-assoc (inr z) = inr (inr z)
g ⊎-assoc (inl x) = inl (inl x)
g ⊎-assoc (inr (inl y)) = inl (inr y)
g ⊎-assoc (inr (inr z)) = inr z
η ⊎-assoc (inl (inl x)) = refl
η ⊎-assoc (inl (inr y)) = refl
η ⊎-assoc (inr z) = refl
h ⊎-assoc = g ⊎-assoc
ε ⊎-assoc (inl x) = refl
ε ⊎-assoc (inr (inl y)) = refl
ε ⊎-assoc (inr (inr z)) = refl
module _ {X : Set l1} {Y : Set l2} where
⊎-com : (X ⊎ Y) ≃ (Y ⊎ X)
f ⊎-com (inl x) = inr x
f ⊎-com (inr y) = inl y
g ⊎-com (inl y) = inr y
g ⊎-com (inr x) = inl x
η ⊎-com (inl x) = refl
η ⊎-com (inr y) = refl
h ⊎-com = g ⊎-com
ε ⊎-com (inl y) = refl
ε ⊎-com (inr x) = refl
module _ {X1 : Set l1} {X2 : Set l2} {Y1 : Set l3} {Y2 : Set l4}
(e1 : X1 ≃ Y1) (e2 : X2 ≃ Y2) where
infixr 5 _⊎e_
_⊎e_ : (X1 ⊎ X2) ≃ (Y1 ⊎ Y2)
f _⊎e_ (inl x) = inl (f e1 x)
f _⊎e_ (inr y) = inr (f e2 y)
g _⊎e_ (inl x) = inl (g e1 x)
g _⊎e_ (inr y) = inr (g e2 y)
η _⊎e_ (inl x) = ap inl (η e1 x)
η _⊎e_ (inr y) = ap inr (η e2 y)
h _⊎e_ (inl x) = inl (h e1 x)
h _⊎e_ (inr y) = inr (h e2 y)
ε _⊎e_ (inl x) = ap inl (ε e1 x)
ε _⊎e_ (inr y) = ap inr (ε e2 y)