-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathPart_3.html
1258 lines (834 loc) · 38.1 KB
/
Part_3.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<title>Applied Machine Learning</title>
<meta charset="utf-8" />
<meta name="author" content="Max Kuhn and Davis Vaughan (RStudio)" />
<meta name="date" content="2020-01-26" />
<link href="libs/remark-css-0.0.1/default.css" rel="stylesheet" />
<script src="libs/kePrint-0.0.1/kePrint.js"></script>
<link href="libs/countdown-0.3.3/countdown.css" rel="stylesheet" />
<script src="libs/countdown-0.3.3/countdown.js"></script>
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.8.2/css/all.css" integrity="sha384-oS3vJWv+0UjzBfQzYUhtDYW+Pj2yciDJxpsK1OYPAYjqT085Qq/1cq5FLXAZQ7Ay" crossorigin="anonymous">
<link rel="stylesheet" href="assets/css/aml-theme.css" type="text/css" />
<link rel="stylesheet" href="assets/css/aml-fonts.css" type="text/css" />
</head>
<body>
<textarea id="source">
class: title-slide, center
<span class="fa-stack fa-4x">
<i class="fa fa-circle fa-stack-2x" style="color: #ffffff;"></i>
<strong class="fa-stack-1x" style="color:#E7553C;">3</strong>
</span>
# Applied Machine Learning
## Feature Engineering
---
# Loading
```r
library(tidymodels)
```
```
## ── Attaching packages ─────────────────────────────────────────────────────────── tidymodels 0.0.4 ──
```
```
## ✓ broom 0.5.3 ✓ recipes 0.1.9
## ✓ dials 0.0.4 ✓ rsample 0.0.5
## ✓ dplyr 0.8.3 ✓ tibble 2.1.3
## ✓ ggplot2 3.2.1 ✓ tune 0.0.1
## ✓ infer 0.5.1 ✓ workflows 0.1.0
## ✓ parsnip 0.0.5 ✓ yardstick 0.0.5
## ✓ purrr 0.3.3
```
```
## ── Conflicts ────────────────────────────────────────────────────────────── tidymodels_conflicts() ──
## x purrr::discard() masks scales::discard()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x ggplot2::margin() masks dials::margin()
## x recipes::step() masks stats::step()
## x recipes::yj_trans() masks scales::yj_trans()
```
---
# Previously
```r
library(AmesHousing)
ames <- make_ames() %>%
dplyr::select(-matches("Qu"))
set.seed(4595)
data_split <- initial_split(ames, strata = "Sale_Price")
ames_train <- training(data_split)
ames_test <- testing(data_split)
lm_mod <- linear_reg() %>%
set_engine("lm")
perf_metrics <- metric_set(rmse, rsq, ccc)
```
---
layout: false
class: inverse, middle, center
# Feature Engineering
---
# Preprocessing and Feature Engineering
This part mostly concerns what we can _do_ to our variables to make the models more effective.
This is mostly related to the predictors. Operations that we might use are:
* transformations of individual predictors or groups of variables
* alternate encodings of a variable
* elimination of predictors (unsupervised)
In statistics, this is generally called _preprocessing_ the data. As usual, the computer science side of modeling has a much flashier name: _feature engineering_.
---
# Reasons for Modifying the Data
* Some models (_K_-NN, SVMs, PLS, neural networks) require that the predictor variables have the same units. **Centering** and **scaling** the predictors can be used for this purpose.
* Other models are very sensitive to correlations between the predictors and **filters** or **PCA signal extraction** can improve the model.
* As we'll see in an example, changing the scale of the predictors using a **transformation** can lead to a big improvement.
* In other cases, the data can be **encoded** in a way that maximizes its effect on the model. Representing the date as the day of the week can be very effective for modeling public transportation data.
---
# Reasons for Modifying the Data
* Many models cannot cope with missing data so **imputation** strategies might be necessary.
* Development of new _features_ that represent something important to the outcome (e.g. compute distances to public transportation, university buildings, public schools, etc.)
---
layout: false
class: inverse, middle, center
# Preprocessing Categorical Predictors
---
# Dummy Variables
One common procedure for modeling is to create numeric representations of categorical data. This is usually done via _dummy variables_: a set of binary 0/1 variables for different levels of an R factor.
For example, the Ames housing data contains a predictor called `Alley` with levels: 'Gravel', 'No_Alley_Access', 'Paved'.
Most dummy variable procedures would make _two_ numeric variables from this predictor that are 1 when the observation has that level, and 0 otherwise.
<table class="table" style="width: auto !important; margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="border-bottom:hidden; padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="1"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">Data</div></th>
<th style="border-bottom:hidden; padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">Dummy Variables</div></th>
</tr>
<tr>
<th style="text-align:left;"> </th>
<th style="text-align:right;"> No_Alley_Access </th>
<th style="text-align:right;"> Paved </th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;"> Gravel </td>
<td style="text-align:right;"> 0 </td>
<td style="text-align:right;"> 0 </td>
</tr>
<tr>
<td style="text-align:left;"> No_Alley_Access </td>
<td style="text-align:right;"> 1 </td>
<td style="text-align:right;"> 0 </td>
</tr>
<tr>
<td style="text-align:left;"> Paved </td>
<td style="text-align:right;"> 0 </td>
<td style="text-align:right;"> 1 </td>
</tr>
</tbody>
</table>
---
# Dummy Variables
If there are _C_ levels of the factor, only _C_-1 dummy variables are created since the last can be inferred from the others. There are different contrast schemes for creating the new variables.
How do you create them in R?
The formula method does this for you<sup>1</sup>. Otherwise, the traditional method is to use `model.matrix()` to create a matrix. However, there are some caveats to this that can make things difficult.
We'll show another method for making them shortly.
.footnote[[1] _Almost always_ at least. Tree- and rule-based model functions do not. Examples are `randomforest`, `ranger`, `rpart`, `C50`, `Cubist`, `klaR::NaiveBayes` and others.]
???
Caveats include new (unseen) levels of a predictor value.
---
# Infrequent Levels in Categorical Factors
.pull-left[
One issue is: what happens when there are very few values of a level?
Consider the Ames training set and the `Neighborhood` variable.
If these data are resampled, what would happen to Landmark and similar locations when dummy variables are created?
]
.pull-right[
<img src="images/part-3-ames-hood-1.svg" width="100%" style="display: block; margin: auto;" />
]
???
Bring up the idea that these issues are model-dependent and something like trees wouldn't care.
Mention the alley variable and how almost all properties have no alley access.
Talk about near-zero-variance predictors.
---
# Infrequent Levels in Categorical Factors
A _zero-variance_ predictor that has only a single value (zero) would be the result.
Many models (e.g. linear/logistic regression, etc.) would find this numerically problematic and issue a warning and `NA` values for that coefficient. Trees and similar models would not notice.
There are two main approaches to dealing with this:
* Run a filter on the training set predictors prior to running the model and remove the zero-variance predictors.
* Recode the factor so that infrequently occurring predictors (and possibly new values) are pooled into an "other" category.
However, `model.matrix()` and the formula method are incapable of helping you.
---
# Recipes <img src="images/recipes.png" class="title-hex">
Recipes are an alternative method for creating the data frame of predictors for a model. They allow for a sequence of _steps_ that define how data should be handled.
Recall the previous part where we used the formula `log10(Sale_Price) ~ Longitude + Latitude`? These steps are:
.pull-left-a-little[
* Assign `Sale_Price` to be the outcome
* Assign `Longitude` and `Latitude` as predictors
* Log transform the outcome
]
.pull-right-a-lot[
To start using a recipe, these steps can be done using
```r
# recipes loaded by tidymodels
mod_rec <- recipe(Sale_Price ~ Longitude + Latitude, ames_train) %>%
step_log(Sale_Price, base = 10)
```
This creates the recipe for data processing (but does not execute it yet)
]
---
# Recipes and Categorical Predictors <img src="images/recipes.png" class="title-hex">
To deal with the dummy variable issue, we can expand the recipe with more steps:
.pull-left[
```r
mod_rec <- recipe(
Sale_Price ~ Longitude + Latitude + Neighborhood,
data = ames_train
) %>%
step_log(Sale_Price, base = 10) %>%
# Lump factor levels that occur in
# <= 5% of data as "other"
step_other(Neighborhood, threshold = 0.05) %>%
# Create dummy variables for _any_ factor variables
step_dummy(all_nominal())
```
]
.pull-right[
```r
mod_rec
```
```
## Data Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 3
##
## Operations:
##
## Log transformation on Sale_Price
## Collapsing factor levels for Neighborhood
## Dummy variables from all_nominal
```
]
Note that we can use standard `dplyr` selectors as well as some new ones based on the data type (`all_nominal()`) or by their role in the analysis (`all_predictors()`).
---
# Using Recipes <img src="images/recipes.png" class="title-hex">
<br>
<br>
<img src="images/recipes-process.svg" width="70%" style="display: block; margin: auto;" />
---
# Preparing the Recipe <img src="images/recipes.png" class="title-hex">
Now that we have a preprocessing _specification_, let's run it on the training set to _prepare_ the recipe:
```r
mod_rec_trained <- prep(mod_rec, training = ames_train, verbose = TRUE)
```
```
## oper 1 step log [training]
## oper 2 step other [training]
## oper 3 step dummy [training]
## The retained training set is ~ 0.19 Mb in memory.
```
Here, the "training" is to determine which levels to lump together and to enumerate the factor levels of the `Neighborhood` variable.
---
# Preparing the Recipe <img src="images/recipes.png" class="title-hex">
```r
mod_rec_trained
```
```
## Data Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 3
##
## Training data contained 2199 data points and no missing data.
##
## Operations:
##
## Log transformation on Sale_Price [trained]
## Collapsing factor levels for Neighborhood [trained]
## Dummy variables from Neighborhood [trained]
```
---
# Getting the Values - Training <img src="images/recipes.png" class="title-hex">
Now that the recipe has been prepared, we can extract the processed training set from it, with all of the steps applied. To do that, we use `juice()`.
```r
# Extracts processed version of `ames_train`
juice(mod_rec_trained)
```
```
## # A tibble: 2,199 x 11
## Longitude Latitude Sale_Price Neighborhood_Co… Neighborhood_Ol… Neighborhood_Ed… Neighborhood_So…
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 -93.6 42.1 5.24 0 0 0 0
## 2 -93.6 42.1 5.39 0 0 0 0
## 3 -93.6 42.1 5.28 0 0 0 0
## 4 -93.6 42.1 5.29 0 0 0 0
## 5 -93.6 42.1 5.33 0 0 0 0
## 6 -93.6 42.1 5.28 0 0 0 0
## 7 -93.6 42.1 5.37 0 0 0 0
## 8 -93.6 42.1 5.28 0 0 0 0
## 9 -93.6 42.1 5.25 0 0 0 0
## 10 -93.6 42.1 5.26 0 0 0 0
## # … with 2,189 more rows, and 4 more variables: Neighborhood_Northridge_Heights <dbl>,
## # Neighborhood_Gilbert <dbl>, Neighborhood_Sawyer <dbl>, Neighborhood_other <dbl>
```
This is what you'd pass on to `fit()` your model.
---
# Getting the Values - Testing <img src="images/recipes.png" class="title-hex">
After model fitting, you'll eventually want to make predictions on _new data_. But first, you have to reapply all of the pre-processing steps on it. To do that, use `bake()`.
```r
bake(mod_rec_trained, new_data = ames_test)
```
```
## # A tibble: 731 x 11
## Longitude Latitude Sale_Price Neighborhood_Co… Neighborhood_Ol… Neighborhood_Ed… Neighborhood_So…
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 -93.6 42.1 5.33 0 0 0 0
## 2 -93.6 42.1 5.02 0 0 0 0
## 3 -93.6 42.1 5.27 0 0 0 0
## 4 -93.6 42.1 5.60 0 0 0 0
## 5 -93.6 42.1 5.28 0 0 0 0
## 6 -93.6 42.1 5.17 0 0 0 0
## 7 -93.6 42.1 5.02 0 0 0 0
## 8 -93.7 42.1 5.46 0 0 0 0
## 9 -93.7 42.1 5.44 0 0 0 0
## 10 -93.7 42.1 5.33 0 0 0 0
## # … with 721 more rows, and 4 more variables: Neighborhood_Northridge_Heights <dbl>,
## # Neighborhood_Gilbert <dbl>, Neighborhood_Sawyer <dbl>, Neighborhood_other <dbl>
```
This is what you'd pass on to `predict()`.
---
class: middle, center
# `juice()` is used to get the pre-processed training set <br> (basically for free)
# `bake()` is used to pre-process a _new_ data set
---
# How Data Are Used <img src="images/recipes.png" class="title-hex">
Note that we have:
```r
recipe(..., data = data_set)
prep(..., training = data_set)
bake(..., new_data = data_set)
```
* `recipe()` - `data` is used _only_ to determine column names and types. A 0-row data frame could even be used.
* `prep()` - `training` is the entire training set, used to estimate parameters in each step (like means or standard deviations).
* `bake()` - `new_data` is data to apply the pre-processing to, using the _same estimated parameters_ from when `prep()` was called on the training set.
---
# Hands-On: Zero-Variance Filter
Instead of using `step_other()`, take 10 minutes and research how to eliminate any zero-variance predictors using the [`recipe` reference site](https://tidymodels.github.io/recipes/reference/index.html).
Re-run the recipe with this step.
What were the results?
Do you prefer either of these approaches to the other?
<div class="countdown" id="timer_5e2e3155" style="bottom:0;left:1;" data-warnwhen="0">
<code class="countdown-time"><span class="countdown-digits minutes">10</span><span class="countdown-digits colon">:</span><span class="countdown-digits seconds">00</span></code>
</div>
---
layout: false
class: inverse, middle, center
# Interaction Effects
---
# Interactions <img src="images/ggplot2.png" class="title-hex">
An **interaction** between two predictors indicates that the relationship between the predictors and the outcome cannot be describe using only one of the variables.
For example, let's look at the relationship between the price of a house and the year in which it was built. The relationship appears to be slightly nonlinear, possibly quadratic:
.pull-left[
```r
price_breaks <- (1:6)*(10^5)
ames_train %>%
ggplot(aes(x = Year_Built, y = Sale_Price)) +
geom_point(alpha = 0.4) +
scale_y_log10() +
geom_smooth(method = "loess")
```
]
.pull-right[
<img src="images/part-3-year-built-plot-1.svg" width="80%" style="display: block; margin: auto;" />
]
---
# Interactions <img src="images/ggplot2.png" class="title-hex">
However... what if we separate this trend based on whether the property has air conditioning or not.
.pull-left[
```r
ames_train %>%
group_by(Central_Air) %>%
summarise(n = n()) %>%
mutate(percent = n / sum(n) * 100)
```
```
## # A tibble: 2 x 3
## Central_Air n percent
## <fct> <int> <dbl>
## 1 N 141 6.41
## 2 Y 2058 93.6
```
```r
# to get robust linear regression model
library(MASS)
ames_train %>%
ggplot(aes(x = Year_Built, y = Sale_Price)) +
geom_point(alpha = 0.4) +
scale_y_log10() +
facet_wrap(~ Central_Air, nrow = 2) +
geom_smooth(method = "rlm")
```
]
.pull-right[
<img src="images/part-3-year-built-ac-plot-1.svg" width="100%" style="display: block; margin: auto;" />
]
---
# Interactions
It appears as though the relationship between the year built and the sale price is somewhat _different_ for the two groups.
* When there is no AC, the trend is perhaps flat or slightly decreasing.
* With AC, there is a linear increasing trend or is perhaps slightly quadratic with some outliers at the low end.
```r
mod1 <- lm(log10(Sale_Price) ~ Year_Built + Central_Air, data = ames_train)
mod2 <- lm(log10(Sale_Price) ~ Year_Built + Central_Air + Year_Built:Central_Air, data = ames_train)
anova(mod1, mod2)
```
```
## Analysis of Variance Table
##
## Model 1: log10(Sale_Price) ~ Year_Built + Central_Air
## Model 2: log10(Sale_Price) ~ Year_Built + Central_Air + Year_Built:Central_Air
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2196 42.741
## 2 2195 41.733 1 1.0075 52.993 4.64e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
---
# Interactions in Recipes <img src="images/recipes.png" class="title-hex">
We first create the dummy variables for the qualitative predictor (`Central_Air`) then use a formula to create the interaction using the `:` operator in an additional step:
```r
interact_rec <- recipe(Sale_Price ~ Year_Built + Central_Air, data = ames_train) %>%
step_log(Sale_Price) %>%
step_dummy(Central_Air) %>%
step_interact(~ starts_with("Central_Air"):Year_Built)
interact_rec %>%
prep(training = ames_train) %>%
juice() %>%
# select a few rows with different values
slice(153:157)
```
```
## # A tibble: 5 x 4
## Year_Built Sale_Price Central_Air_Y Central_Air_Y_x_Year_Built
## <int> <dbl> <dbl> <dbl>
## 1 1915 11.9 1 1915
## 2 1912 12.0 1 1912
## 3 1920 11.7 1 1920
## 4 1963 11.6 0 0
## 5 1930 10.9 0 0
```
---
layout: false
class: inverse, middle, center
# Principal Component Analysis
---
# A Bivariate Example
.pull-left[
.font120[
The plot on the right shows two **predictors** from a real _test_ set where the objective is to predict the two classes.
The predictors are strongly correlated and each has a right-skewed distribution.
There appears to be some class separation but only in the bivariate plot; the individual predictors show poor discrimination of the classes.
Some models might be sensitive to highly correlated and/or skewed predictors.
Is there something that we can do to make the predictors _easier for the model to use_?
***Any ideas***?
]
]
.pull-right[
<img src="images/part-3-bivariate-plot-natural-1.svg" width="90%" style="display: block; margin: auto;" />
]
???
Skewed, positive data => ratios (to me)
Mention the use of logistic regression and ROC curve results.
These data are in the github repo
---
# A Bivariate Example
.pull-left[
.font110[
We might start by estimating transformations of the predictors to resolve the skewness.
The Box-Cox transformation is a family of transformations originally designed for the outcomes of models. We can use it here for the predictors.
It uses the data to estimate a wide variety of transformations including the inverse, log, sqrt, and polynomial functions.
Using each factor in isolation, both predictors were determined to need inverse transformations (approximately).
The figure on the right shows the data after these transformations have been applied.
A logistic regression model shows a substantial improvement in classifying using the altered data.
]
]
.pull-right[
<img src="images/part-3-bivariate-plot-inverse-1.svg" width="90%" style="display: block; margin: auto;" />
]
???
The reason to show the _test data_ (or some other data) is to emphasize that we can visually overfit by reapplying the model to the data (as before).
Ordinarily, we would not use the test set in this way. When there is enough data, use a random sample (like a validation set) to evaluate the changes.
---
# More Recipe Steps <img src="images/recipes.png" class="title-hex">
The package has a [rich set](https://tidymodels.github.io/recipes/reference/index.html) of steps that can be used including transformations, filters, variable creation and removal, dimension reduction procedures, imputation, and others.
There are also packages like [`embed`]( https://tidymodels.github.io/embed), [`textrecipes`]( https://tidymodels.github.io/textrecipes), and [`themis`]( https://tidymodels.github.io/themis) that extend recipes with new steps.
For example, in the previous bivariate data problem, the Box-Cox transformation was conducted using:
```r
bivariate_rec <- recipe(Class ~ ., data = bivariate_data_train) %>%
step_BoxCox(all_predictors())
bivariate_rec <- prep(bivariate_rec, training = bivariate_data_train, verbose = FALSE)
inverse_test_data <- bake(bivariate_rec, new_data = bivariate_data_test)
```
???
Show `tidy` method to get the lambda values
---
# Correlated Predictors
In the Ames data, there are potential clusters of _highly correlated variables_:
* proxies for size: `Lot_Area`, `Gr_Liv_Area`, `First_Flr_SF`, `Bsmt_Unf_SF`, `Full_Bath` etc.
* quality fields: `Overall_Qual`, `Garage_Qual`, `Kitchen_Qual`, `Exter_Qual`, etc.
It would be nice if we could combine/amalgamate the variables in these clusters into a single variable that represents them.
Another way of putting this is that we would like to create artificial features of the data that account for a certain amount of _variation_ in the data.
There are a few different methods that can accomplish this; we will focus on principal component analysis (PCA). Another, regularization, will be discussed later.
---
# PCA Signal Extraction
Principal component analysis (PCA) is a multivariate statistical technique that can be used to create artificial new variables from an existing set.
Conceptually, PCA determines which variables account for the most correlation in the data and creates a new variable that is a linear combination of all the predictors.
* This is called the _first principal component_ (aka `PC1`).
* This linear combination emphasizes the variables that are the most correlated.
The variables constructing `PC1` are then _removed from the data_.
The second PCA component is the linear combination that accounts for the most left-over correlation in the data (and so on).
---
# PCA Signal Extraction
The main takeaways:
* The components account for as much as the variation in the original data as possible.
* Each component is uncorrelated with the others.
* The new variables are _linear combinations_ of all of the input variables and are effectively unitless (It is generally a good idea to center and scale your predictors because of this).
For our purposes, we would use PCA on the _predictors_ to:
* Reduce the number of variables exposed to the model (but this is not feature selection).
* Combat excessive correlations between the predictors (aka multicollinearity).
In this way, the procedure is often called _signal extraction_ but this is poorly named since there is no guarantee that the new variables will have an association with the outcome.
???
No feature selection due to linear combinations
---
# Back to the Bivariate Example - Transformed Data
<img src="images/part-3-bivariate-rec-orig-1.svg" width="40%" style="display: block; margin: auto;" />
---
# Back to the Bivariate Example - Recipes <img src="images/recipes.png" class="title-hex"><img src="images/ggplot2.png" class="title-hex">
We can build on our transformed data recipe and add normalization:
```r
bivariate_pca <-
recipe(Class ~ PredictorA + PredictorB, data = bivariate_data_train) %>%
step_BoxCox(all_predictors()) %>%
step_normalize(all_predictors()) %>% # center and scale
step_pca(all_predictors()) %>%
prep(training = bivariate_data_train)
pca_test <- bake(bivariate_pca, new_data = bivariate_data_test)
# Put components axes on the same range
pca_rng <- extendrange(c(pca_test$PC1, pca_test$PC2))
pca_test %>%
ggplot(aes(x = PC1, y = PC2, color = Class)) +
geom_point(alpha = .2, cex = 1.5) +
theme(legend.position = "top") +
scale_colour_calc() +
xlim(pca_rng) + ylim(pca_rng) +
xlab("Principal Component 1") +
ylab("Principal Component 2")
```
???
Order matters; Box-Cox before centering;
YJ transformation
---
# Back to the Bivariate Example
.pull-left[
.font120[
Recall that even after the Box-Cox transformation was applied to our previous example, there was still a high degree of correlation between the predictors.
After the transformation, the predictors were centered and scaled, then PCA was conducted. The plot on the right shows the results.
Since these two predictors are highly correlated, the first component captures 91.7% of the variation in the original data. However...
...recall that PCA does not guarantee that the components are associated with the outcome. In this example, the _least important_ component has the association with the outcome.
]
]
.pull-right[
<img src="images/part-3-bivariate-plot-pca-1.svg" width="90%" style="display: block; margin: auto;" />
]
---
class: middle, center
# PCA does a _rotation_ of the data so that the _variation_ in one dimension is maximized.
# The rotation also makes the new variables _uncorrelated_.
---
class: middle, center
<img src="images/rotate.gif" width="40%" />
---
layout: false
class: inverse, middle, center
# Recipe and Models
---
# Longitude <img src="images/ggplot2.png" class="title-hex">
.pull-left[
```r
ggplot(ames_train,
aes(x = Longitude, y = Sale_Price)) +
geom_point(alpha = .5) +
geom_smooth(
method = "lm",
formula = y ~ splines::bs(x, 5),
se = FALSE
) +
scale_y_log10()
```
Splines add nonlinear versions of the predictor to a linear model to create smooth and flexible relationships between the predictor and outcome.
This "basis expansion" technique will be seen again in the regression section of the workshop.
]
.pull-right[
<img src="images/part-3-longitude-1.svg" width="100%" style="display: block; margin: auto;" />
]
---
# Latitude <img src="images/ggplot2.png" class="title-hex">
.pull-left[
```r
ggplot(ames_train,
aes(x = Latitude, y = Sale_Price)) +
geom_point(alpha = .5) +
geom_smooth(
method = "lm",
formula = y ~ splines::ns(x, df = 5),
se = FALSE
) +
scale_y_log10()
```
]
.pull-right[
<img src="images/part-3-latitude-1.svg" width="100%" style="display: block; margin: auto;" />
]
---
# Linear Models Again <img src="images/recipes.png" class="title-hex">
.pull-left-a-little[
* We'll add neighborhood in as well and a few other house features.
* Our plots suggests that the coordinates can be helpful but probably require a nonlinear representation. We can add these using _B-splines_ with 5 degrees of freedom.
]
.pull-right-a-lot[
* Two numeric predictors are very skewed and could use a transformation (`Lot_Area` and `Gr_Liv_Area`).
```r
ames_rec <- recipe(
Sale_Price ~ Bldg_Type + Neighborhood + Year_Built +
Gr_Liv_Area + Full_Bath + Year_Sold + Lot_Area +
Central_Air + Longitude + Latitude,
data = ames_train
) %>%
step_log(Sale_Price, base = 10) %>%
step_BoxCox(Lot_Area, Gr_Liv_Area) %>%
step_other(Neighborhood, threshold = 0.05) %>%
step_dummy(all_nominal()) %>%
step_interact(~ starts_with("Central_Air"):Year_Built) %>%
step_ns(Longitude, Latitude, deg_free = 5)
```
]
---
# Combining the Recipe with a Model <img src="images/recipes.png" class="title-hex"><img src="images/parsnip.png" class="title-hex"><img src="images/broom.png" class="title-hex">
- `prep()` - `juice()` - `fit()`
```r
ames_rec <- prep(ames_rec)
lm_fit <-
lm_mod %>%
fit(Sale_Price ~ ., data = juice(ames_rec)) # The recipe puts Sale_Price on the log scale
glance(lm_fit$fit)
```
```
## # A tibble: 1 x 11
## r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual
## <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <int>
## 1 0.802 0.799 0.0800 303. 0 30 2448. -4834. -4657. 13.9 2169
```
- `bake()` - `predict()`
```r