forked from dknoester/ealib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmarkov_network.cpp
96 lines (83 loc) · 3.01 KB
/
markov_network.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
/* markov_network.cpp
*
* This file is part of EALib.
*
* Copyright 2014 David B. Knoester.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <ea/mkv/markov_network_evolution.h>
#include <ea/generational_models/moran_process.h>
#include <ea/fitness_function.h>
#include <ea/cmdline_interface.h>
#include <ea/datafiles/fitness.h>
using namespace ealib;
using namespace mkv;
/*! Sample fitness function for Markov networks.
*/
struct example_fitness : fitness_function<unary_fitness<double>, constantS, stochasticS> {
template <typename Individual, typename RNG, typename EA>
double operator()(Individual& ind, RNG& rng, EA& ea) {
// get the phenotype (markov network):
typename EA::phenotype_type &N = ealib::phenotype(ind, ea);
// probably want to reset the RNG for the markov network:
N.reset(rng.seed());
// now, set the values of the bits in the input vector:
double f=0.0;
for(std::size_t i=0; i<128; ++i) {
// allocate space for the inputs:
std::vector<int> inputs;//(net.ninput_states(), 0);
inputs.push_back(rng.bit());
inputs.push_back(rng.bit());
// update the network n times:
N.clear();
N.update(inputs);
if(*N.begin_output() == (inputs[0] ^ inputs[1])) {
++f;
}
}
// and return some measure of fitness:
return f;
}
};
// Evolutionary algorithm definition.
typedef markov_network_evolution
< example_fitness
, recombination::asexual
, generational_models::moran_process< >
> ea_type;
/*! Define the EA's command-line interface.
*/
template <typename EA>
class cli : public cmdline_interface<EA> {
public:
virtual void gather_options() {
add_mkv_options(this);
add_option<POPULATION_SIZE>(this);
add_option<MORAN_REPLACEMENT_RATE_P>(this);
add_option<RUN_UPDATES>(this);
add_option<RUN_EPOCHS>(this);
add_option<RNG_SEED>(this);
add_option<RECORDING_PERIOD>(this);
}
virtual void gather_tools() {
add_tool<analysis::dominant_genetic_graph>(this);
add_tool<analysis::dominant_causal_graph>(this);
add_tool<analysis::dominant_reduced_graph>(this);
}
virtual void gather_events(EA& ea) {
add_event<datafiles::fitness_dat>(ea);
};
};
LIBEA_CMDLINE_INSTANCE(ea_type, cli);