-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_cmap.py
102 lines (83 loc) · 3.34 KB
/
custom_cmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
'''
Chris Slocum
http://schubert.atmos.colostate.edu/~cslocum/custom_cmap.html
make_cmap takes a list of tuples which contain RGB values.
The RGB values may either be in 8-bit [0 to 255] (in which
bit must be set to True when called) or arithmetic [0 to 1]
(default). make_cmap returns a cmap with equally spaced colors.
Arrange your tuples so that the first color is the lowest
value for the colorbar and the last is the highest.
position contains values from 0 to 1 to dictate the
location of each color.
'''
import matplotlib as mpl
import numpy as np
import sys
def make_cmap(colors=None, position=None, bit=False):
lenco = len(colors) - 0
if isinstance(colors, str):
colors = tint(name=colors)
sea = np.asarray([0])
land1 = np.linspace(0.005, 0.6, lenco - 3)
land2 = np.linspace(0.7, 1, 2)
land = np.append(land1, land2)
position = np.append(sea, land)
bit = True
if position is None:
position = np.linspace(0, 1, lenco)
else:
if len(position) != lenco:
sys.exit("position length must be the same as colors")
elif position[0] != 0 or position[-1] != 1:
sys.exit("position must start with 0 and end with 1")
bit_rgb = np.linspace(0, 1, 256)
if bit:
for i in range(lenco):
colors[i] = (bit_rgb[colors[i][0]],
bit_rgb[colors[i][1]],
bit_rgb[colors[i][2]])
cdict = {'red': [], 'green': [], 'blue': []}
for pos, color in zip(position, colors):
cdict['red'].append((pos, color[0], color[0]))
cdict['green'].append((pos, color[1], color[1]))
cdict['blue'].append((pos, color[2], color[2]))
cmap = mpl.colors.LinearSegmentedColormap('my_colormap', cdict, 256)
return cmap
def tint(name=None):
if name == 'arid':
colors = [(245, 245, 245), (235, 235, 237),
(220, 220, 220), (212, 207, 204),
(212, 193, 179), (212, 184, 163),
(212, 201, 180), (202, 190, 174),
(180, 170, 158), (170, 160, 150),
(160, 152, 141), (146, 136, 129)]
colors.reverse()
elif name == 'warm_humid':
colors = [(245, 245, 245), (235, 235, 237),
(220, 220, 220), (212, 207, 204),
(212, 193, 179), (212, 184, 163),
(212, 201, 180), (169, 192, 166),
(134, 184, 159), (120, 172, 149),
(114, 164, 141), (106, 153, 135),
(152, 221, 250)]
colors.reverse()
elif name == 'cold_humid':
colors = [(245, 245, 245), (235, 235, 237),
(220, 220, 220), (212, 207, 204),
(212, 193, 179), (212, 184, 163),
(212, 201, 180), (180, 192, 180),
(145, 177, 171), (130, 165, 159),
(120, 159, 152), (112, 147, 141)]
colors.reverse()
return colors
def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100):
'''
http://stackoverflow.com/questions/18926031/
how-to-extract-a-subset-of-a-colormap-as-a-new
-colormap-in-matplotlib
'''
st = 'trunc({n},{a:.2f},{b:.2f})'
new_cmap = mpl.colors.LinearSegmentedColormap.from_list(
st.format(n=cmap.name, a=minval, b=maxval),
cmap(np.linspace(minval, maxval, n)))
return new_cmap