diff --git a/src/1-foundations/2-homotopy-type-theory/04-homotopies-and-equivalences.rzk.md b/src/1-foundations/2-homotopy-type-theory/04-homotopies-and-equivalences.rzk.md index 450c036..59c5f0a 100644 --- a/src/1-foundations/2-homotopy-type-theory/04-homotopies-and-equivalences.rzk.md +++ b/src/1-foundations/2-homotopy-type-theory/04-homotopies-and-equivalences.rzk.md @@ -404,13 +404,51 @@ which are discussed in Sections [2.6](06-cartesian-product-types.rzk.md) and [2. ### Transitivity ```rzk --- #def equivalence-trans --- (A B C : U) --- : equivalence A B → equivalence B C → equivalence A C --- := \ (f, isequiv-f) (g, isequiv-g) → +#define qinv-trans + ( A B C : U) + ( f : A → B) + ( g : B → C) + : qinv A B f → qinv B C g → qinv A C (compose A B C g f) + := + \ (f⁻¹ , (α-f , β-f)) (g⁻¹ , (α-g , β-g)) → + ( compose C B A f⁻¹ g⁻¹ + , ( \ c → + path-concat C + ( g (f (f⁻¹ (g⁻¹ c)))) + ( g (g⁻¹ c)) + ( c) + ( ap B C g + ( f (f⁻¹ (g⁻¹ c))) + ( g⁻¹ c) + ( α-f (g⁻¹ c))) + ( α-g c) + , \ a → + path-concat A + ( f⁻¹ (g⁻¹ (g (f a)))) + ( f⁻¹ (f a)) + ( a) + ( ap B A f⁻¹ + ( g⁻¹ (g (f a))) + ( f a) + ( β-g (f a))) + ( β-f a))) + +#define equivalence-trans + ( A B C : U) + : equivalence A B + → equivalence B C + → equivalence A C + := + \ (f , isequiv-f) (g , isequiv-g) → + ( compose A B C g f + , qinv-to-isequiv A C + ( compose A B C g f) + ( qinv-trans A B C f g + ( isequiv-to-qinv A B f isequiv-f) + ( isequiv-to-qinv B C g isequiv-g))) ``` - +## Proof of Corollary 2.4.4 ``` title="Proof for corollary 2.4.4. Homotopy with id" lemma 2.4.3 : H(x) • g (p) = f (p) • H y