forked from tensorflow/ngraph-bridge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_ngtf.py
executable file
·319 lines (258 loc) · 11 KB
/
build_ngtf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#!/usr/bin/env python3
# ==============================================================================
# Copyright 2018-2019 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from tools.build_utils import *
def main():
'''
Builds TensorFlow, ngraph, and ngraph-tf for python 3
'''
# Component versions
ngraph_version = "v0.18.0"
tf_version = "v1.13.1"
# Command line parser options
parser = argparse.ArgumentParser(formatter_class=RawTextHelpFormatter)
parser.add_argument(
'--debug_build',
help="Builds a debug version of the nGraph components\n",
action="store_true")
parser.add_argument(
'--verbose_build',
help="Display verbose error messages\n",
action="store_true")
parser.add_argument(
'--target_arch',
help=
"Architecture flag to use (e.g., haswell, core-avx2 etc. Default \'native\'\n",
)
parser.add_argument(
'--build_gpu_backend',
help="nGraph backends will include nVidia GPU.\n"
"Note: You need to have CUDA headers and libraries available on the build system.\n",
action="store_true")
parser.add_argument(
'--build_plaidml_backend',
help="nGraph backends will include PlaidML bckend\n",
action="store_true")
parser.add_argument(
'--use_prebuilt_tensorflow',
help="Skip building TensorFlow and use downloaded version.\n" +
"Note that in this case C++ unit tests won't be build for nGrapg-TF bridge",
action="store_true")
parser.add_argument(
'--distributed_build',
type=str,
help="Builds a distributed version of the nGraph components\n",
action="store")
parser.add_argument(
'--enable_variables_and_optimizers',
help="Ops like variable and optimizers are supported by nGraph in this version of the bridge\n",
action="store_true")
parser.add_argument(
'--use_grappler_optimizer',
help="Use Grappler optimizer instead of the optimization passes\n",
action="store_true")
parser.add_argument(
'--artifacts_dir',
type=str,
help="Copy the artifacts to the given directory\n",
action="store")
parser.add_argument(
'--ngraph_version',
type=str,
help="nGraph version to use (Default: " + ngraph_version + ")\n",
action="store")
parser.add_argument(
'--skip_tensorflow_build',
help="Use TensorFlow that's already installed" +
"(do not build or install) \n",
action="store_true")
# Done with the options. Now parse the commandline
arguments = parser.parse_args()
if (arguments.debug_build):
print("Building in DEBUG mode\n")
verbosity = False
if (arguments.verbose_build):
print("Building in with VERBOSE output messages\n")
verbosity = True
#-------------------------------
# Recipe
#-------------------------------
# Default directories
build_dir = 'build_cmake'
try:
os.makedirs(build_dir)
except OSError as exc: # Python >2.5
if exc.errno == errno.EEXIST and os.path.isdir(build_dir):
pass
pwd = os.getcwd()
ngraph_tf_src_dir = os.path.abspath(pwd)
build_dir_abs = os.path.abspath(build_dir)
os.chdir(build_dir)
venv_dir = 'venv-tf-py3'
artifacts_location = 'artifacts'
if arguments.artifacts_dir:
artifacts_location = os.path.abspath(arguments.artifacts_dir)
artifacts_location = os.path.abspath(artifacts_location)
print("ARTIFACTS location: " + artifacts_location)
#install virtualenv
install_virtual_env(venv_dir)
# Load the virtual env
load_venv(venv_dir)
# Setup the virtual env
setup_venv(venv_dir)
target_arch = 'native'
if (arguments.target_arch):
target_arch = arguments.target_arch
print("Target Arch: %s" % target_arch)
# The cxx_abi flag is translated to _GLIBCXX_USE_CXX11_ABI
# For gcc 4.8 - this flag is set to 0 and newer ones, this is set to 1
# The specific value is determined from the TensorFlow build
# Normally the shipped TensorFlow is built with gcc 4.8 and thus this
# flag is set to 0
cxx_abi = "0"
if arguments.use_prebuilt_tensorflow:
print("Using existing TensorFlow")
command_executor(["pip", "install", "-U", "tensorflow==" + tf_version])
import tensorflow as tf
print('Version information:')
print('TensorFlow version: ', tf.__version__)
print('C Compiler version used in building TensorFlow: ',
tf.__compiler_version__)
cxx_abi = str(tf.__cxx11_abi_flag__)
else:
if not arguments.skip_tensorflow_build:
print("Building TensorFlow")
# Download TensorFlow
download_repo("tensorflow",
"https://github.com/tensorflow/tensorflow.git",
tf_version)
# Build TensorFlow
build_tensorflow(venv_dir, "tensorflow", artifacts_location,
target_arch, verbosity)
# Install tensorflow
# Note that if gcc 4.8 is used for building TensorFlow this flag
# will be 0
cxx_abi = install_tensorflow(venv_dir, artifacts_location)
else:
import tensorflow as tf
print('Version information:')
print('TensorFlow version: ', tf.__version__)
print('C Compiler version used in building TensorFlow: ',
tf.__compiler_version__)
cxx_abi = str(tf.__cxx11_abi_flag__)
# Download nGraph
if arguments.ngraph_version:
ngraph_version = arguments.ngraph_version
print("nGraph Version: ", ngraph_version)
download_repo("ngraph", "https://github.com/NervanaSystems/ngraph.git",
ngraph_version)
# Now build nGraph
ngraph_cmake_flags = [
"-DNGRAPH_INSTALL_PREFIX=" + artifacts_location,
"-DNGRAPH_USE_CXX_ABI=" + cxx_abi,
"-DNGRAPH_DEX_ONLY=TRUE",
"-DNGRAPH_DEBUG_ENABLE=NO",
"-DNGRAPH_TARGET_ARCH=" + target_arch,
"-DNGRAPH_TUNE_ARCH=" + target_arch,
]
if (platform.system() != 'Darwin'):
ngraph_cmake_flags.extend(["-DNGRAPH_TOOLS_ENABLE=YES"])
else:
ngraph_cmake_flags.extend(["-DNGRAPH_TOOLS_ENABLE=NO"])
if arguments.debug_build:
ngraph_cmake_flags.extend(["-DCMAKE_BUILD_TYPE=Debug"])
if (arguments.distributed_build == "OMPI"):
ngraph_cmake_flags.extend(["-DNGRAPH_DISTRIBUTED_ENABLE=OMPI"])
elif (arguments.distributed_build == "MLSL"):
ngraph_cmake_flags.extend(["-DNGRAPH_DISTRIBUTED_ENABLE=MLSL"])
else:
ngraph_cmake_flags.extend(["-DNGRAPH_DISTRIBUTED_ENABLE=OFF"])
if arguments.build_gpu_backend:
ngraph_cmake_flags.extend(["-DNGRAPH_GPU_ENABLE=YES"])
else:
ngraph_cmake_flags.extend(["-DNGRAPH_GPU_ENABLE=NO"])
if arguments.build_plaidml_backend:
command_executor(["pip", "install", "-U", "plaidML"])
ngraph_cmake_flags.extend(["-DNGRAPH_PLAIDML_ENABLE=YES"])
else:
ngraph_cmake_flags.extend(["-DNGRAPH_PLAIDML_ENABLE=NO"])
if not arguments.use_prebuilt_tensorflow:
ngraph_cmake_flags.extend(["-DNGRAPH_UNIT_TEST_ENABLE=YES"])
else:
ngraph_cmake_flags.extend(["-DNGRAPH_UNIT_TEST_ENABLE=NO"])
build_ngraph(build_dir, "./ngraph", ngraph_cmake_flags, verbosity)
# Next build CMAKE options for the bridge
tf_src_dir = os.path.abspath("tensorflow")
ngraph_tf_cmake_flags = [
"-DNGRAPH_TF_INSTALL_PREFIX=" + artifacts_location,
"-DUSE_PRE_BUILT_NGRAPH=ON",
"-DNGRAPH_TARGET_ARCH=" + target_arch,
"-DNGRAPH_TUNE_ARCH=" + target_arch,
"-DNGRAPH_ARTIFACTS_DIR=" + artifacts_location,
]
if (arguments.debug_build):
ngraph_tf_cmake_flags.extend(["-DCMAKE_BUILD_TYPE=Debug"])
if arguments.use_prebuilt_tensorflow:
ngraph_tf_cmake_flags.extend(["-DUNIT_TEST_ENABLE=OFF"])
else:
ngraph_tf_cmake_flags.extend(["-DUNIT_TEST_ENABLE=ON"])
ngraph_tf_cmake_flags.extend(["-DTF_SRC_DIR=" + tf_src_dir])
ngraph_tf_cmake_flags.extend([
"-DUNIT_TEST_TF_CC_DIR=" + os.path.join(artifacts_location,
"tensorflow")
])
if ((arguments.distributed_build == "OMPI")
or (arguments.distributed_build == "MLSL")):
ngraph_tf_cmake_flags.extend(["-DNGRAPH_DISTRIBUTED_ENABLE=TRUE"])
else:
ngraph_tf_cmake_flags.extend(["-DNGRAPH_DISTRIBUTED_ENABLE=FALSE"])
if (arguments.enable_variables_and_optimizers):
ngraph_tf_cmake_flags.extend(["-DNGRAPH_TF_ENABLE_VARIABLES_AND_OPTIMIZERS=TRUE"])
else:
ngraph_tf_cmake_flags.extend(["-DNGRAPH_TF_ENABLE_VARIABLES_AND_OPTIMIZERS=FALSE"])
if (arguments.use_grappler_optimizer):
ngraph_tf_cmake_flags.extend(
["-DNGRAPH_TF_USE_GRAPPLER_OPTIMIZER=TRUE"])
else:
ngraph_tf_cmake_flags.extend(
["-DNGRAPH_TF_USE_GRAPPLER_OPTIMIZER=FALSE"])
# Now build the bridge
ng_tf_whl = build_ngraph_tf(build_dir, artifacts_location,
ngraph_tf_src_dir, venv_dir,
ngraph_tf_cmake_flags, verbosity)
# Make sure that the ngraph bridge whl is present in the artfacts directory
if not os.path.isfile(os.path.join(artifacts_location, ng_tf_whl)):
raise Exception("Cannot locate nGraph whl in the artifacts location")
print("SUCCESSFULLY generated wheel: %s" % ng_tf_whl)
print("PWD: " + os.getcwd())
# Copy the TensorFlow Python code tree to artifacts directory so that they can
# be used for running TensorFlow Python unit tests
if not arguments.use_prebuilt_tensorflow:
command_executor([
'cp', '-r', build_dir_abs + '/tensorflow/tensorflow/python',
os.path.join(artifacts_location, "tensorflow")
])
# Run a quick test
install_ngraph_tf(venv_dir, os.path.join(artifacts_location, ng_tf_whl))
if arguments.use_grappler_optimizer:
import tensorflow as tf
import ngraph_bridge
if not ngraph_bridge.is_grappler_enabled():
raise Exception("Build failed: 'use_grappler_optimizer' specified but not used")
print('\033[1;32mBuild successful\033[0m')
os.chdir(pwd)
if __name__ == '__main__':
main()