forked from avalente/appmetrics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
88 lines (64 loc) · 2.33 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import time
import logging
import random
from appmetrics import metrics, histogram
log = logging.getLogger("benchmark")
DURATION = 30
MIN_LATENCY = 1
MAX_LATENCY = 15
"""
Microbenchmark used to measure library's overhead.
The benchmark works by emulating a process that gets requests continuously and handles them
with a latency choosen randomly between MIN_LATENCY and MAX_LATENCY milliseconds.
The idea is to emulate some kind of i/o bound worker such as a web worker that uses mostly a db.
"""
def benchmark(new_fun, duration):
name = "bench"
new_fun(name)
work_time = 0.0
overhead = 0.0
started_on = time.time()
while True:
now = time.time()
if now - started_on >= duration:
break
latency = random.randint(MIN_LATENCY, MAX_LATENCY) / 1000.0
time.sleep(latency)
t1 = time.time()
metrics.notify(name, latency)
t2 = time.time()
overhead += (t2 - t1)
work_time += latency
elapsed = time.time() - started_on
metric_value = metrics.get(name)
metrics.delete_metric(name)
return elapsed, work_time, overhead, metric_value
def report(kind, duration, work_time, overhead, metric_value):
overhead_pct = overhead / duration * 100.0
work_pct = work_time / duration * 100.0
log.info(
"%s: %.4fs over %.2fs (%.2fs work, %.2f%%) - %.4f%% with results %s",
kind, overhead, duration, work_time, work_pct, overhead_pct, metric_value)
def run(kind, new_fun, duration):
log.info("benchmarking %s for %s seconds", kind, duration)
res = benchmark(new_fun, duration)
report(kind, *res)
def benchmark_all():
run("counter", metrics.new_counter, DURATION)
run("histogram", metrics.new_histogram, DURATION)
run(
"histogram-sliding time window",
lambda name: metrics.new_histogram(name, histogram.SlidingTimeWindowReservoir(5)),
DURATION)
run(
"histogram-sliding window",
lambda name: metrics.new_histogram(name, histogram.SlidingWindowReservoir()),
DURATION)
run(
"histogram-exponentially decaying",
lambda name: metrics.new_histogram(name, histogram.ExponentialDecayingReservoir()),
DURATION)
run("meter", metrics.new_meter, DURATION)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
benchmark_all()