-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.cc
272 lines (234 loc) · 7.54 KB
/
main.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#include <array>
#include <chrono>
#include <cstdint>
#include <cstdio>
#include <memory>
#include <optional>
#include <string>
#include <unordered_set>
#include <vector>
#include "utils.h"
using Bit = bool;
using Natural = uint64_t;
// Set of natural numbers, implemented as a bitset.
class SetOfNaturals {
public:
void Clear() { rep_.clear(); }
void Insert(Natural idx) {
if (idx >= rep_.size()) {
rep_.resize(idx + 1, false);
}
size_ += !rep_[idx];
rep_[idx] = true;
}
bool Contains(Natural idx) const { return idx < rep_.size() && rep_[idx]; }
template <typename FnTy> void ForEach(FnTy func) {
for (Natural i = 0, e = rep_.size(); i < e; i++) {
if (rep_[i]) {
func(i);
}
}
}
int64_t size() const { return size_; }
private:
int64_t size_ = 0;
std::vector<bool> rep_;
};
// A possibly infinite sequence of bits.
class BitSequence {
public:
// Subclasses override this method to provide class specific functionality.
//
// Either returns a bit or a sentinel value (std::optional).
virtual std::optional<Bit> Get(Natural) = 0;
virtual ~BitSequence() {}
};
// This bit sequence contains a finite prefix of an infinite bit sequence.
//
// If the caller asks for bits beyond the prefix it was told about, it returns
// the sentinel. It also keeps track of the indices that it returned sentinel
// for.
class LazyBitSequence : public BitSequence {
public:
explicit LazyBitSequence(const std::vector<Bit> *values,
const SetOfNaturals *indices_present,
SetOfNaturals *unfulfilled_indices)
: values_(*values), indices_present_(*indices_present),
unfulfilled_indices_(unfulfilled_indices) {}
virtual ~LazyBitSequence() override {}
std::optional<Bit> Get(Natural idx) override {
if (indices_present_.Contains(idx)) {
return values_[idx];
}
unfulfilled_indices_->Insert(idx);
return std::nullopt;
}
private:
const std::vector<bool> &values_;
const SetOfNaturals &indices_present_;
SetOfNaturals *unfulfilled_indices_;
};
template <typename PredicateTy> Bit ForSome(PredicateTy predicate) {
ASSERT_ONLY_ONE_ACTIVE_CALL();
std::vector<bool> scratch;
SetOfNaturals indices_of_bits_present;
SetOfNaturals indices_of_bits_requested;
while (true) {
bool current_modulus_too_small = false;
LOG("Entering inner loop with indices_of_bits_present.size() = %lld",
indices_of_bits_present.size());
std::vector<int> indices_of_bits_present_vect;
indices_of_bits_present.ForEach(
[&](Natural n) { indices_of_bits_present_vect.push_back(n); });
scratch.assign(scratch.size(), false);
for (uint64_t i = 0, e = 1ull << (1 + indices_of_bits_present.size());
i < e; i++) {
for (int idx : indices_of_bits_present_vect) {
if (!scratch[idx]) {
scratch[idx] = true;
break;
} else {
scratch[idx] = false;
}
}
#ifdef ENABLE_LOG
bool enable_verbose_log = false;
if (enable_verbose_log) {
std::string scratch_str;
for (bool b : scratch) {
scratch_str += b ? "1 " : "0 ";
;
}
LOG("Scratch = %s", scratch_str.c_str());
}
#endif
LazyBitSequence lazy_bit_stream(&scratch, &indices_of_bits_present,
&indices_of_bits_requested);
std::optional<Bit> result = predicate(&lazy_bit_stream);
if (result.has_value() && *result) {
return true;
}
if (!result.has_value()) {
// This is where we need the condition asserted by OnlyOneActiveForSome.
//
// We assume that if `predicate` has returned the sentinel value then it
// must have run out of bits. But that is not necessary if we allowed
// nested ForSome calls -- it could have run out of bits in the
// LazyBitSequence provided by an "outer" ForSome.
Natural new_scratch_size = scratch.size();
indices_of_bits_requested.ForEach([&](Natural requested_index) {
LOG("New index requested: %llu", requested_index);
indices_of_bits_present.Insert(requested_index);
new_scratch_size = std::max(new_scratch_size, requested_index + 1);
});
scratch.resize(new_scratch_size);
current_modulus_too_small = true;
indices_of_bits_requested.Clear();
break;
}
}
if (!current_modulus_too_small) {
#ifdef ENABLE_LOG
std::string indices_of_bits_present_str;
indices_of_bits_present.ForEach([&](Natural idx) {
indices_of_bits_present_str += std::to_string(idx);
indices_of_bits_present_str += " ";
});
LOG("Tried all possibilities with %s",
indices_of_bits_present_str.c_str());
#endif
return false;
}
}
}
template <typename PredicateTy> Bit ForEvery(PredicateTy pred) {
auto inverse_pred = [=](BitSequence *c) -> std::optional<Bit> {
ASSIGN_OR_RETURN(Bit, val, pred(c));
return !val;
};
return !ForSome(inverse_pred);
}
// Can be used to map a single bit sequence into N bit sequences, each reading
// mapping bit `I` to bit `N*I+J` in the main sequence, with 0 <= `J` < N.
class StridedBitSequence : public BitSequence {
public:
StridedBitSequence(BitSequence *source, int stride, int offset)
: source_(source), stride_(stride), offset_(offset) {}
std::optional<Bit> Get(Natural idx) override {
return source_->Get(idx * stride_ + offset_);
}
private:
BitSequence *source_;
int stride_;
int offset_;
};
template <typename Predicate2Ty> Bit ForEvery2(Predicate2Ty pred) {
return ForEvery([=](BitSequence *product) {
StridedBitSequence a(product, /*stride=*/2, /*offset=*/0);
StridedBitSequence b(product, /*stride=*/2, /*offset=*/1);
return pred(&a, &b);
});
}
template <typename T, typename PredicateTy>
Bit Equal(PredicateTy f_a, PredicateTy f_b) {
auto check = [=](BitSequence *idx) -> std::optional<Bit> {
ASSIGN_OR_RETURN(T, a, f_a(idx));
ASSIGN_OR_RETURN(T, b, f_b(idx));
return a == b;
};
return ForEvery(check);
}
template <typename PredicateNoOptionalTy>
Natural Least(PredicateNoOptionalTy fn) {
Natural i = 0;
while (!fn(i)) {
i++;
}
return i;
}
std::optional<bool> Eq(Natural n, BitSequence *a, BitSequence *b) {
for (Natural i = 0; i < n; i++) {
ASSIGN_OR_RETURN(Bit, ai, a->Get(i));
ASSIGN_OR_RETURN(Bit, bi, b->Get(i));
if (ai != bi) {
return false;
}
}
return true;
}
template <typename T, typename PredicateTy> Natural Modulus(PredicateTy fn) {
auto is_modulus = [=](Natural n) {
return ForEvery2([=](BitSequence *a, BitSequence *b) -> std::optional<Bit> {
ASSIGN_OR_RETURN(bool, equal, Eq(n, a, b));
if (!equal) {
return true;
}
ASSIGN_OR_RETURN(T, fa, fn(a));
ASSIGN_OR_RETURN(T, fb, fn(b));
return fa == fb;
});
};
return Least(is_modulus);
}
std::optional<Bit> FuncF(BitSequence *a) {
ASSIGN_OR_RETURN(Bit, t0, a->Get(4));
ASSIGN_OR_RETURN(Bit, t1, a->Get(t0 * 7));
ASSIGN_OR_RETURN(Bit, t2, a->Get(7));
return t0 * 7 + t1 * t2;
}
std::optional<Bit> FuncG(BitSequence *a) {
ASSIGN_OR_RETURN(Bit, t0, a->Get(4));
ASSIGN_OR_RETURN(Bit, t1, a->Get(7));
ASSIGN_OR_RETURN(Bit, t2, a->Get(t0 + 11 * t1));
return t2 * t0;
}
void TestA() {
CREATE_TIMER();
PRINT_BIT_EXPR(Equal<Bit>(FuncF, FuncF));
PRINT_BIT_EXPR(Equal<Bit>(FuncG, FuncG));
PRINT_BIT_EXPR(Equal<Bit>(FuncF, FuncG));
PRINT_BIT_EXPR(Equal<Bit>(FuncG, FuncF));
PRINT_NAT_EXPR(Modulus<Bit>(FuncF));
PRINT_NAT_EXPR(Modulus<Bit>(FuncG));
}
int main() { TestA(); }