-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclassify.py
179 lines (149 loc) · 6.31 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A demo to classify Pygame camera stream."""
import argparse
import collections
from collections import deque
import common
import io
import numpy as np
import operator
import os
import pathlib
import pygame
import pygame.camera
from pygame.locals import *
import tflite_runtime.interpreter as tflite
import time
import menu
import kit_display
import kit_input
Category = collections.namedtuple('Category', ['id', 'score'])
restore_menu = False
def input_tensor(interpreter):
"""Returns input tensor view as numpy array of shape (height, width, 3)."""
tensor_index = interpreter.get_input_details()[0]['index']
return interpreter.tensor(tensor_index)()[0]
def get_output(interpreter, top_k, score_threshold):
"""Returns no more than top_k categories with score >= score_threshold."""
scores = common.output_tensor(interpreter, 0)
categories = [
Category(i, scores[i])
for i in np.argpartition(scores, -top_k)[-top_k:]
if scores[i] >= score_threshold
]
return sorted(categories, key=operator.itemgetter(1), reverse=True)
class Capture(object):
pygame.font.init()
def __init__(self):
self.size = (480,480)
self.font = pygame.font.Font(None, 48)
# create a display surface. standard pygame stuff
self.display = kit_display.SharedDisplay()
# this is the same as what we saw before
self.clist = pygame.camera.list_cameras()
if not self.clist:
raise ValueError("Sorry, no cameras detected.")
self.cam = pygame.camera.Camera(self.clist[0], self.size)
self.cam.start()
# create a surface to capture to. for performance purposes
# bit depth is the same as that of the display surface.
self.snapshot = pygame.surface.Surface(self.size, 0, self.display)
def get_and_flip(self):
# if you don't want to tie the framerate to the camera, you can check
# if the camera has an image ready. note that while this works
# on most cameras, some will never return true.
self.snapshot = self.cam.get_image()
# blit it to the display surface. simple!
self.display.blit(self.snapshot, (0,0))
pygame.display.flip()
return self.snapshot
def get(self):
# if you don't want to tie the framerate to the camera, you can check
# if the camera has an image ready. note that while this works
# on most cameras, some will never return true.
self.snapshot = self.cam.get_image()
return self.snapshot
def flip(self, label="No label"):
self.display.blit(self.snapshot, (0,0))
text_surface = self.font.render(label, True, (255,0,0))
text_position = (self.display.get_width()/2 ,
self.display.get_height() - self.font.size(label)[1])
self.display.blit(text_surface, text_surface.get_rect(center=text_position))
pygame.display.flip()
def stop(self):
self.cam.stop();
print('camera stopped');
def start():
restore_menu = True
main()
def main():
script_dir = pathlib.Path(__file__).parent.absolute()
default_model_dir = os.path.join(script_dir, 'models')
default_model = 'mobilenet_v2_1.0_224_quant_edgetpu.tflite'
default_labels = 'imagenet_labels.txt'
parser = argparse.ArgumentParser()
parser.add_argument('--model', help='.tflite model path',
default=os.path.join(default_model_dir,default_model))
parser.add_argument('--labels', help='label file path',
default=os.path.join(default_model_dir, default_labels))
args = parser.parse_args()
with open(args.labels, 'r') as f:
pairs = (l.strip().split(maxsplit=1) for l in f.readlines())
labels = dict((int(k), v) for k, v in pairs)
interpreter = common.make_interpreter(args.model)
interpreter.allocate_tensors()
pygame.init()
pygame.camera.init()
camlist = pygame.camera.list_cameras()
print('By default using camera: ', camlist[-1])
size = (480, 480)
#camera = pygame.camera.Camera(camlist[0], size)
#surface = pygame.display.set_mode(size, 0)
#surface.unlock()
#snapshot = pygame.surface.Surface(size, 0, surface)
capture = Capture()
stop = False
width, height, channels = common.input_image_size(interpreter)
#camera.start()
try:
fps = deque(maxlen=20)
fps.append(time.time())
while not stop:
#snapshot = camera.get_image()
snapshot = capture.get()
imagen = pygame.transform.scale(snapshot, (width, height))
input = np.frombuffer(imagen.get_buffer(), dtype=np.uint8)
start_ms = time.time()
common.input_tensor(interpreter)[:,:] = np.reshape(input, (common.input_image_size(interpreter)))
interpreter.invoke()
results = get_output(interpreter, top_k=3, score_threshold=0)
inference_ms = (time.time() - start_ms)*1000.0
fps.append(time.time())
fps_ms = len(fps)/(fps[-1] - fps[0])
annotate_text = 'Inference: {:5.2f}ms FPS: {:3.1f}'.format(inference_ms, fps_ms)
for result in results:
annotate_text += '\n{:.0f}% {}'.format(100*result[1], labels[result[0]])
print(annotate_text)
capture.flip(labels[results[0][0]])
# capture.flip("okay")
for event in pygame.event.get():
if event.type == pygame.QUIT or event.type == pygame.KEYDOWN:
stop = True
if kit_input.get_joystick_event() == kit_input.EVENT_APPLY:
stop = True
finally:
capture.stop()
if __name__ == '__main__':
main()